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LINEAR EQUATION OF MOTION OF BLOCH DOMAIN WALL IN FERROMAGNET
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The general equations of motion of 180° Bloch domain wall are obtained in the linear external magnetic field ap-
proximation. The determination of the wall type and a new technique of the wall drive are considered.

ot
The general linear Bloch domain wall (BDW) equations of motion are yx:‘t‘known with the exception of the case
of the small displacements [1].
Let the easy axis of the uniaxial ferromagnet lie along the z-axis and the BDW plane be the xz. The orientation
of the magnetization vector M= M(, ) is described by the polar angle 6 (6 = 0 is the y-axis direction) and the
azimuthal angle ¢ (6 = m/2, ¢ = 0 is the z-axis direction). The magnetic energy density is

2
w=# (6 2+ sin?6- (¢')2] -—BM—Z $in20 cos2 + 2 M2 cos2 — M [hsin O sin g + h,cos 0+ hysin@ cosg] . (1)

In eq. (1) @, and B >0 are the exchange and uniaxial anisotropy constants, respectively, the third term is a local
demagnetization energy, and A (y, t) is an external magnetic field.
The following four ground states of the BDW are possible: 8 = 65=n/2,h =0;

cos = ttanh [(¥ —q)/8], sinyy=tsech[(y —q)/6] . (2)

Here the type of the BDW is determined by the sign of sin g, ¢ is the position of the BDW centre, and & = v/a/f
is the wall width.
The solution of the Landau—Lifshitz equations is assumed to be of the fon

e=pol(r—q)8], 6=1/2+6,(»,0+.., 0,=A()singy<n/2. @A)
To the first order in 4 the equations of motion take the form

30, /3t = —yH, —NyHy,, —dvy=7Hy, —MH,, , @)

where the effective fields are

Hy =MWy +4nM0, +h,, H, =h,singy—hycosgy, )

and where w = —d2/dy2 + cos 2y, is the well-known Hermitian operator [2]. In (4) ¥ >0 and A are the gyromag-
netic ratio and a dimensionless damping parameter.

When the condition W@, =0 [2] holds, all the remaining terms in (4) must be orthogonal to sinygy [3]. Hence,
(5) can be written as
25 A+4n\yM 254 = —y(h,sin2pg) + y(h, sin gy cospg) — ARy singg)
. 6
o= (w}, singglg=4myM-254+ 7(hy sinpg) — 1)\(sin2w0 -hz) + Ay{singg cos g by ©

where

-
0= [ ()dy, and (gysiny =12
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Eqgs. (6) yield the BDW centre equation of motion
G+anyMA=£3(0), (¢)]
where

Si(0) = Oy inZipg +i,) —y sin -0 — A (s 008 -
+ 4y P M (1#32) [(sindgy k) — (sin g cos vg AT Higpsingg) -

Consider now some consequences of egs. (7) and (8).
A)h =(0,0,h,). In the limit |5h,] < |h,| the rsults of [4] follow. If the terms proportional to ¥y h, are not

neglected, one can obtain the finite Mquenw of the Doring resonance [41.
WA =(0,k,,0) The BDW motion is possible only for the time-dependent field h # 0 (wall streaming [5]). The

sign of (sin g+ hy)determlnes the type of the BDW.

C) h = (h,, 0,0). The BDW motion is possible only for the spatially nonuniform field. Assuming h, = ky one
obtains fi,, = +4n2y2M(1+ A2) (82k/2;, where the sign depends on the type of the BDW.

The expenmental observation of this motion is possible, if §7k/2 > H,, where H_ is the coercivity field. Using
the estimates H_~ 0.1 Oe and & =~ 5 X 10~5 cm one obtains the field yadient k> 10‘ Oe/cm.

Its interesting to get an insight into the nonlinear behaviour of the BDW motion in the field A, = ky.

Using the Slonczewski variational procedure [6] valid for the ferromagnets with /4 > 1 one obtains the follow-
ing equations:

(1+A2)§=ucos Y — AGin2¢ +ugsiny), (1 +A2)§=sin2y +uqsiny + Aucosy , )

where q is given now in terms of 8, ¢ is given in terms of (21r1M)“1, u = k§/4nM, and the azimuthal angle y of the
vector M is measured from the x-axis in the xy-plane.
The phase plane of (9) for ¢ > 0 and 0 <y </2 contains the curve

qp= (ctnYo)/A— 2(cos Yg)/u , (10)

where Y =0.

The phase trajectory originating from g = ¢ = 0 has dy//dq > 0 unitil it intersects (10). The angle  is the maxi-
mum at the intersection and afterwards the phase trajectory has dy/dg <O tending to the curve (10) from the
region of greater y when g - ==, It cannot intersect the curve (10) again, since dy/dq = A laty =0.

For very large ¢ one assumes ¥~0, and from (9) ¢ ~ (Ay)~! and that results in the constant BDW velocity

q=u/\. (1))

The condition kg <€ BM must, of course, be satisfied.
It is interesting to point out that for A=0, eqs. (9) has the asymptotic solution

¥=0, =12, q=qrexpri(1+2?), a2
that differs from that of (11).
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