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Abstract—The stability conditions for a bubble domain in the fields
of magnetostatic traps are analyzed. For this purpose the quasi-station-
ary equations of bubble motion are derived which take into account
field nonuniformity across the bubble diameter. The contribution of
the Permalloy overlay is considered qualitatively. The conditions of
static and dynamic stability of trapped bubbles are studied and the
stability role in the operating margin development is analyzed.

L. INTRODUCTION

PRIMARY characteristic of bubble propagation circuits

is the operating margins. To determine the operating
margins the dynamics of the “bubble-Permalloy overlay” cou-
pled system should be analyzed. Despite significant advances,
the predictions of dynamic characteristics of the system re-
mains an open problem. The adequate solution of the prob-
lem implies the clearing up the well-known effects associated
with the nonstationary dynamics of the domain walls and the
understanding of the magnetization reversal in the Permalloy
overlay. Additional complexity arises from the difficulties
in analytical description of the fields acting on the bubble in
the propagation circuit.

Almasi and Lin [1] determine the quasi-static operating
margins by analyzing the motion of the bubble through the
potential barriers of the propagation channel. Analytical
formulas describing the profile of the wells as a function of
the magnitude and orientation of the drive field and the
diameter and position of the bubble are the essential points
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in their constructions. These formulas obtained within the
framework of the magnetostatic circuit theory simplify the
solution of the problem in a giant way since they eliminate
the necessity of labor-consuming numerical integration of
the continuum model equations of the magnetization dis-
tribution in the Permalloy overlay (see the summarizing papers
in this field [2], [3]).

The fields affecting the bubble are spatially nonuniform,
which results in changing the bubble stability range in com-
parison to the Thiele predictions [4]. The first to note this
theoretically was apparently O'Dell [5]. The authors of [1]-
[3] point out the significance of this effect but do not provide
the complete analysis of variation of the bubble stability range
and its effect on the circuit operating margins.

In this paper the authors, adhering to a purely analytical
approach, aim to clear up the contribution to the operating
margins of the change of the bubble stability limits in non-
uniform fields. The role of the Permalloy subsystem is con-
sidered qualitatively. The circle of questions touched upon
in the paper is wider as compared to [6]. The presented re-
sults should be taken into consideration while building up
a consistent theory of bubble propagation circuits.

II. EQUATIONS OF MOTION

A rigorous formulation of the problem of bubble dynamics
in a bubble circuit necessitates self-consistent solution of the
Landau-Lifshitz equations for the bubble material and the
Permalloy overlay. Below we shall always assume that the
subsystems are coupled by magnetostatic interaction. No gen-
eral solutions can be obtained for this system so an approxi-
mate description has to be used.
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Fig. 1. The position of the center of the bubble of radius 7 in the
Iaboratory frame of references x 0y disposed in the plane of the film
is defined by the vector R(X, ¥). The center of the local frame of
references x'0'y" is placed in K; it is convenient to use the polar co-
ordinates in the local frame of references. The projection of the mag-
netization vector M;, on the film plane forms the angle ¢ with the

tangential plane to the side surface of the bubble and the angle  with
the axis 0x.

A. Equations of Motion for a Bubble

The derivation of the quasi-stationary equations of motion
is described in the Appendix. It is essentially based on the
fact that the bubble material parameter (the quality factor)

= 1)

which determines the predominance of the uniaxial anisotropy
field H, over the stray fields and the bubble existence itself
is large. A known expression from the 180° Bloch domain
wall theory can serve for a good trial function for the polar
angle between the easy axis and the magnetization vector 1I7!s4
It is assumed that the azimuthal angle ¥ determining the de-
flection of 117, from the plane tangent to the wall remains in-
dependent (see Fig. 1). The trial function has the following
parameters:  is the bubble radius, R (X, Y) the position of the
bubble center at the film plane, and Ar, an elliptic deforma-
tion of the bubble (r >> Ar,). We treat the variation of the
Lagrange function which is the difference between the Déring
kinetic energy and the potential energy integrated over the
spatial coordinates with regard for the dissipative contribution.
The variation approach reduces the problem to the equations
which describe the time evolution of the bubble macroparam-
eters r, 1‘5 and Ar, and the microparameter Y. It is important
that the equation for ¥ is independent of the equations for
r, R and Ar,. On the one hand, this is due to the fact that
according to (1) the contribution of the y-dependent mag-
netic dipole energy localized within the wall is small compared
with the wall energy. On the other hand, all the following
analysis is limited to constant-velocity bubble motion and
small time variations of other.bubble parameters. Under these
quasi-stationary conditions ¥ ~ 0 if all the velocities do not
exceed the limits determined by restructuring of the bubble
wall [7], [8]. This type of bubble propagation will be con-
sidered as the stationary or steady-state propagation. It is
known [9] that the steady-state propagation velocities can
be sufficiently high. In particular, the eliminated equation
for ¥ places the limits for the steady-state propagation range.
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If viscous friction dominates over the effects due to the
kinetic energy we can derive the following equations for the
bubble macroparameters (H is the bias field):
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In the above equations M and h are the magnetization and
thickness of the bubble film. The bubble wall mobility u and
the characteristic length / can be treated as the fitting variation
parameters. The functions F(d) and S;(d) analyzed in [4]
are the force function and the elliptic stability funcuon They
depend on the dimensionless bubble diameter d= dfh. The
bubble is affected by the following effective fields:
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The projection H,(x,) of the field of external sources and
Permalloy features on the easy axis of the bubble material
which enters (5)-(7) is a function of X +rcosf and Y +rsing
(see Fig. 1). The interaction energy Ey is

2 r+Ar, cos 26
Ey= 2M,hf d{iJ‘ H(X+p
o 0

~cos B, Y +psinB) pdp. (8)

Note that the component associated with the bias field A is
eliminated from (8) and appears explicitly in (2) and (4). The
validity of (8) is confirmed by the fact that variation of the
interaction energy according to the form of the effective field
in the Landau-Lifshitz equation

sy =-h [1.G) - 5m.(5) a7

yields a contribution which coincides with (5)-(7) if the trial
function for M;(p) is the one given in the Appendix.

It is important to note that the magnetostatic energy varia-
tion has the same form as 8Ey, and, therefore, the effective
fields entering the equations for the bubble interaction with
the Permalloy subsystem are of the form (5)-(7).
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The field H,(x, ) is assumed not to alter the properties of
the bubble material so the theory uses only the field H, aver-
aged over the bubble perimeter. The nonuniformity of the
field across the bubble diameter is significant with regard to
the sizes of circuit elements and magnetic polarization regions
in them due to the bubble stray field. Variations of H, over
the thickness of the bubble film are assumed to be smooth and
the theory makes use of the field averaged over h.

Equation (8) is limited to the elliptic deformation which is
the lowest order distortion of the circular form of the bubble.
The field (7) is written as an expansion in Ar, /r. The field of
the H,(x, ) type generally results in distortion of the circular
bubble over the whole range of the bias field H. The above
equations ignore the distortion effects due to the dissipation
forces [10] since in a bubble circuit the dominant role is
played by the distortions due to the field nonuniformity.

The in-plane fields, beside affecting the structure of the wall
and the range of its steady-state motion, under certain condi-
tions are known to shift the wall (see, for instance [11]). We
shall ignore these effects though under real conditions they
can make a nonzero contribution. In the case of the steady-
state behavior, the dominant role is played by the contribution
of H, if the bubble radius is larger than the domain wall width
A.

Note that (2)-(4) are valid if the time variation of the ex-
ternal field is small so that inertial effects can be ignored. The
eliminated kinetic energy can also produce a steady-state effect,
namely, the gyrotropic deflection [12], [13]. Equations (2)-
(4) also follow from the equations obtained in [14] and [15]
if the latter are limited to a circular bubble under steady-state
conditions, the terms ~Q™! and Afr << 1 are omitted and the
characteristic length is renormalized.

B. Permalloy Overlay Subsystem

Equations (2)-(4) are sufficient for describing bubble dy-
namics in external fields, however, for unsaturated Permalloy
features we have to add to them the equations describing the
dynamics of magnetization reversal in Permalloy:

) Y e
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where a is the Gilbert damping parameter and 7, is the gyro-
magnetic ratio. The effective internal field  consists of the
exchange and anisotropy fields and the internal demagnetiza-
tion field, the latter being determined by the Permalloy fea-
ture shape (note that this field is not uniform). Magnetization
reversal in the Permalloy features is caused by the planar
driving field H, and the bubble stray field. The contribution
of the bias field to (9) is usually ignored due to the planar
geometry of the Permalloy features, though there are experi-
mental results which suggest this contribution should be taken
into account [16]. From (9) we can find the effective fields
(5) and (6) which enter the equations of motion.

The operating frequencies of bubble devices are at present
less than 1 MHz while the magnetization rates in Permalloy
permit, in principle, the use of considerably higher frequencies.
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Fig. 2. Two types of domain structures revealed with the Bitter tech-
nique are present in the 80-percent Ni 20-percent Fe Permalloy fea-
tures of the bubble circuit: the large-scale structure () and the small-
scale structure (b). The parameters of the features: the thickness
2500 A, the width 5 i (a) and the thickness 1 u, the width 40 u (b).
The type of structure determines the field acting upon the bubble
and influences the operating margins of the circuit.

Hence the Permalloy subsystem can be treated as a “fast” one
compared with the bubble subsystem. We can neglect all the
time derivatives in (9) assuming that 117(7 , 1) is determined by
the drive field and the bubble field at a given moment. How-
ever, even with this approximation it is difficult to obtain self-
consisted solutions of the general system (2)-(4) and (9).
Even in Permalloy features of the simplest rectangular shape
the magnetization distribution is very complicated. The do-
main structures are distinguished by a wide variety (see, for
example, the photographs of Fig. 2) and reveal a metastable
character [17].

Attempts have been made to calculate directly the field H,
in (2)-(4) according to a given domain structure for some
simplest cases [18]. In case of the small-scale magnetic non-
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uniformities we can average the magnetization over a volume
which is larger than the characteristic volume of the structure
but less than that of the Permalloy feature. The averaging
leaves only the long wavelength magnetization fluctuations
with the characteristic sizes determined by the shape anisot-
ropy of the feature and the nonuniformities of the external
fields. This continuum model is widely used now for cal-
culating the fields acting on bubbles (see, for instance [2],
[3], and [19]). The continuum model is also supported by
the fact that (2)-(4) for the motion of the bubble contain
the feature stray fields averaged over the bubble perimeter
and so are slightly sensitive to small-scale Permalloy magnetiza-
tion fluctuations.

Under these conditions the direct experimental observations
of the feature magnetization distribution become especially
important. Magnetooptical observations [20] not only yield
a correlation with the continuum model predictions [21] but
also reveal factors which should be in some cases taken into
account [16], [22]. We shall investigate some solutions of
(2)-(4), and the contribution of the Permalloy subsystem
will be considered qualitatively.

III. BUBBLE STATICS IN A MAGNETOSTATIC TRAP

According to [4] the stability range of a circular bubble in
the uniform bias field H is

Hy<H<Hy ro<r<r, 10)

where Ho, and ro, are the fields and radii of circular and
elliptic instabilities. Remember here that the bubble stability
range is not very wide: for the optimum value of //h = 0.25
[4] we have Ho/H, ~ 1.4 and ryfro = 3.

The stability conditions for the bubble in a nonuniform trap
field, however, can be significantly different from the above
ones. The stability range under such circumstances depends
on the type of the field nonuniformity [S] and [6].

It is appropriate to note here that the bubble motion equa-
tions (2)-(4) contain the effective fields acting on the bubble
and averaged over its wall. The field #, can be measured
directly as a difference between the bias fields for the trapped
and free bubbles of the same radii. This technique was initially
proposed by George and Chen (see Appl. Phys. Lett.,vol. 21,
no. 6, p. 263, Sept. 1972) for measurements of the depth of
potential wells. However, we measure here just the radial
field H, given by (5) rather than field averaged over the
bubble volume H, =Ey[2nMshr® where Ey is determined
by (8). A comparison of the volume averaged field with (5)
and (6) immediately gives the following relations'

= r oH

r oH,
= gL o
A=l

R=3R an

which enable us to make use of calculations in the framework
of the continuum model (usually presented with H,) for deter-
mining the fields affecting the bubble in accordance with
(2)-(4). On the other hand, a comparison of (5) and (6)

IThe authors of [1] point out that the left of the (11) was obtained
by George.
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Fig. 3. The bubble stability range for the parabolic trap (13). Here §
is the dimensionless bias field and v is the strength of the trap. The

characteristic length of the material I =I/h = 0.25. The segment CE'
corresponds to the Thiele stability range. The arrows point in the
direction of the increase of the bubble diameter (d). The straight
lines shown in the figure are the lines of constant diameters the
values of which are pointed out at the ends of the lines. The bybble
diameters at the points C, L, E, M are, respectively, equal tod=1,
14,29,and 4.2. The point P is the point of tangency of the curves
for radial and elliptic instabilities.

yields the equation
B
or
which can be used for determining the propagation field Hg
from the directly measured radial field H,.

There are two effects occurring when the bubble gets to the
magnetostatic trap. First, variation of the bubble diameter
is accomplished by variation of the trap parameters which re-
sults not only in a shift of the bias field range (10) but, gen-
erally, in displacement of the trap center. Secondly, the
range (10) itself is being changed [1]-[3], [5], which will
be discussed below. We shall consider two cases: 1) the trap
is produced by the external fields [23] and 2) the trap field
is produced by the polarizing effect of the bubble stray field
on the unsaturated infinite Permalloy overlay [24].

aH, =
"R 5 THR) 12)

Case 1
Let the axially symmetrical trap ‘is generated by the ex-
ternal field expanded in the vicinity of its extremum
PRESIL TS TN I i a3)
g 222 %) Y am, 8a?
where 7 is the strength of the parabolic trap. Then (2)-(4)
are being transformed into

T+8-d+d? =F(d)
T+ 2433 =5,(d) (15)

where 7= I/h and HA=H/41rM, are the dimensionless charac-
teristic length and the constant component of the field (13).
At v=0, (14) and (15) are reduced to the well-known equa-
tions determining the bubble radius and the conditions of
elliptic instability in a uniform bias field [4].

The analysis of (14) and (15) presented graphically in Fig.
3 shows the absence of elliptic deformation of the bubble
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above and to the right of the curve PEMQ in Fig. 3. It is
interesting to note that the bubble does not experience any
elliptic deformation in the trap if ¥>v). The point M is
found from the above equations and the equation obtained by
ferentiation of (15) with respect to d =d/h:

29d? =85;(d). (16)

The radial bubble stability is determined by analyzing (14)
similarly to the case of =0 [4]. The collapse diameter is
found from the equation

7- 293 = 5o(d) an
where S.,(z? ) is the radial stability function [4]. The collapse
curve NPLCW in Fig. 3 shows that when v <7y, <O the
bubble becomes radially unstable. The point L is defined by
(14), (17) and an equation similar to (16):

-6vd? = Sg(d). 18)

Though at ¥ <0 in the field (13), the bubble is unstable with
respect to displacement of its center, the analysis of this range
of 7 contributes to our understanding of the bubble dynamics
in magnetostatic traps.?

The above effects can be rather significant especially when
considering the elliptic instability. As for the radial instability,
a 10-percent col.lap§e diameter change compared to the uni-
form field case for / = 0.25 is obtained when the field nonuni-
formity across the bubble radius is of the order of 0.01(47Mj).
In practice, however, the collapse radius usually increases
rather than decreases as follows from (17) for y>0. This
fact can be attributed to the specific character of the interac-
tion between the bubble and the unsaturated Permalloy
overlay.

Case 2

It would be very interesting to estimate the above effects for
the real conditions of the bubble-overlay interaction. Un-
fortunately, this problem involves the difficulties associated
with the numerical integration of (2)-(4) and (9). Some ex-
amples considered in [1], [3] indicate the smallness of the
collapse diameter variations. Below we shall use the image
technique [25] to consider analytically the stability of the
bubble which interacts with the infinite unsaturated Permalloy
overlay.

The energy (8) for zero spacing between the bubble film
and the overlay can be replaced by the self-energy Fg_g =
Ems(2h)/2 where

&

Epms(h)=-4n*M2h? f F(x)dx

o

202

4 MZh . A
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2See, for example, below the dynamic contribution (the third term of
the left part) in the (41) describing the bubble stability in the moving
parabolic trap. This contribution has the different sign as compared to
the static one (the second term in the left part of the (41)).
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Fig. 4. The dimensionless collapse and runout digmeters of the bubble
versus the dimensionless characteristic length I for the free bubble
(do 5) and the bubble interacting ﬂ/gough zero spacing with an in-

finie ynsatugated Permalloy sheet (df,,),, Though, usually in experi-
mentsd® >d, (see, for example, (1], at ] > 0.42,dp >d5!

Now (2)-(4) are reduced to

1_(a\* (d

H+==(=) -F(=

*a (2) <2> e
A d
1= ZS,(E)A @1
According to (20) the radial effective field H, (5) now is

4nM; d A

H,= [zp( ) F(d)], 22

AThe bubble-overlay interaction becomes a maximum at
d=~1.7 when the field (22) is 0.176(41LM,). In paper [
the force function is approximated by d/(1+0.75d ) which
accounts for the small difference in the estimates (accord-
ingly d ~ 2.0 and H, ~ 0.174(47Mj).

The conditions for elliptic instability are determined by (21)
whereas those for radial instability follow from the equation
w}uch can be obtained by differentiation of (20) with respect
to d. However, scaling with the aid of image arguments yields
a simple correspondence between the collapse and runout
diameters of the free bubble - dg 2,and that of the bubble inter-
acting with the Permalloy sheet - dm 3 The total energy of the
circular interacting bubble equals four times lhe total energy
of the free one after the transformation d - 2d, 1 > 21. The
same transformation makes the total energy of the elliptic
distortion of the interaction bubble equal to that of the free
one. This means that

ageiy=2dy(D)
areh =23, 23
and in Fig.4 we replot the dependence dy , (7) [4] for 4%, (7).

3The authors are indebted to the reviewer who pointed out the cor-
respondence (23).
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As is shown in Fig. 4, for I>1, =033 the runout diameter
d, of the free bubble is larger than the respective diameter
d" for the bubble interacting with the Permalloy, whereas for
1<I, the situation is reversed. Fig. 4 also shows that for
I<I° =042 the collapse diameter d., of the interacting
bubblc is larger than the free bubble collapse diameter dn,
for I>I.7 the situation is reversed. In the range of 0.33 <
7<042 the trapped bubble diameter stability limits are less
wide than those for the free bubble. The optimum length /
should be defined by analyzing the bubble stability in real
traps.

IV. BUBBLE PROPAGATION IN SINGLE TRAP FIELD.
OPERATING MARGINS*

Let the bubble be placed in a one-dimensional trap of the
type shown in Fig. 5 whose parameters do not vary with time:

H(x, ) = Hy(x - x(1)) = H - ho(x - x(1)). (24)

The propagation field has the properties of #, >0and h, () =
0 so that H,(+>) is equal to the bias field. The trap moves
according to the given equation x(f). Here we shall limit our-
selves to constant trap velocities:

x(f)=vt, v=const>0.

(25)

It is also assumed that the field (24) varies slightly across the
bubble diameter. Thus for v = 0 the radii and fields of collapse
and runout coincide with (10). The equations for radial and
translational motion (ellipticity is so far ignored) can be
written in the following form:

ru[z”TM’ Mk Gy - H:(Xo)] ©6)
Xo +v=-prHy(X,). @n

Here Xo =X - vt is the local coordinate describing the dy-
namic lag of the bubble from the trap center.
Let us consider now the steady-state translation of the bubble

X,=0, X=v (28)
First of all, we shall analyze (27) assuming r = const. Under
steady-state conditions this equation yields

, urh,
v= »wH,(Xo)~T"‘,

F=AFk =

X =0 <vpay = ur -max (Hy) =~ pr ha (29)
The conditions (29) define the steady-state lag X, and the
maximum propagation velocity vmax (the point C in Fig. 5).
Here h,, and a are the depth and width of the trap. The
maximum propagation velocity vpmay should be less than the
Slonczewski peak velocity [8].

As it is shown in Fig. 5, two lag values are possible under
steady-state conditions (points A and B). Formally, both
solutions are equivalent; however, the analysis of the stability

4With the exception of (39)-(41) the results discussed in this section
are based on the analysis of [26).
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Fig. 5. (a) The magnetostatic trap (24) moving with the steady-state
velocity v along the X-direction. The effective width of the trap is
2a and its depth is hy,. Usually, 2¢ is comparable with the bubble
diameter, and hy, is of the order of ten oersteds. (b) Graphical solu-
tion of (29). The larger the parameter v/ur (see the text) the more
the bubble lags. Point C corresponds to the maximal lag and to the
‘maximal velocity Umay Of the steady-state bubble movement in the
trap. This velocity can be smaller than the Slonczewski peak velocity.
The point 4 relates to the unstable bubble position.

equation derived from (27)
Xo() =X, +8X(t)

8X =-urH)(X,) - X (1) (30)

indicates that at £ —> e the stable solution corresponds to the
point B in Fig. 5.

According to (29) the propagation velocity increases with
increasing ratio r/a. Rigorous consideration (see Section V)
shows that this conclusion is valid for r/a <<1. It is worth
mentioning that there is a direct dependence between v,y and
the trap depth.

A. Operating Margins (Approximate Determination)

The operating margins of steady-state bubble propagation
with a single trap is the region in the bubble field-propagation
field (H - h;) plane in which the bubble is propagated with a
given velocity v <uvp,,. The operating margins separate the
steady-state behavior from bubble collapse, runout into a
stripe, and escaping from the trap when (29) is not satisfied.
There can be some other definitions, for example, the op-
erating margins given in the plane of “propagation velocity-
bias field” and so on.

To simplify the subsequent analysis we consider the trap of
the following form:

Hy(x,0)=H - hz/(9” +1)

o=Lw-x. )
a
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Fig. 6. The operating margin V-U-A for the trap (31) moving steadily
with the velocity O = u/udmMg=001. The effective half-wdith of
the trap js a/h = 1. The dimensionless amplitude of the propagating
field is h; = h /4nM;. The solid lines D-C-B-A give the formal
boundaries of the operating margins built in accordance with (32)-
(34). The broken curve U — V is the exact upper boundary obtained
with regard for (45). In the insert, the vicinity of the point B is
shown. Note the dynamic shift of the exact operating margin to
the right with respect to the formal one.

Equations (2)~(4) will be transformed into

he | 2nMsh
11[H7¢1+1] M2 - pidyy )
el 2, O
Py @17 (33)
A
a1y B2 [ B0 20 5y ) |

(34)

The steady-state condition, as before, is defined by (28) where
instead of X =0 we should assume $=0. The bubble veloc-
ity and the bias field are given by (32) and (33) for 7= $=0.
According to (33) the phase ¢ varies in the range

1
V3
and the maximum propagation velocity is achieved at ¢ =
1//3. Now let us determine the boundaries of the operating
margin.

a) The lower boundary of the bias-field operating margin
separates the steady-state behavior of the bubble from its
transforming into a stripe domain. Equation (34) itself is
the stability equation. Substitution of (32) into (34) will
define the bubble radlus on the lower boundary of the op-
erating margin: 7= S,(d) With appropriate substitution of
d, (which coincides with that in [4]) we obtain the curve
B - A in Fig. 6 which the bubble is elliptically stable.

The minimum field &, of the curve B - 4 is found by sub-
stituting into (33) the phase ¢=1/v/3 with ¢=AF, =0.
Along the curve B - A the bias field increases steadily and
the phase ¢ tends to zero. An approximation exists in the
fact that the point B is not at the bottom of the operating

0<¢< 35)

BUBBLE DOMAIN MOTION IN PROPAGATION CIRCUITS

1037

margin. However, this and further constructions are useful
as they give an estimate of the operating margins.

b) The upper boundary of the operating margin separates
the steady-state propagation from the bubble collapse (the
curve C - D in Fig. 6). The equation for the curve C- D is
derived by combining (32) and (33) with #=¢ =0 for r=r,,
where r, is the collapse radius in a uniform bias field. We
shall show that the assumption that r=r, on the upper
boundary of the operating margin, generally, is not true.

c) The left side of the operating margin (the curve B - Cin
Fig. 6) separates the steady-state range from the region where
the bubble is not synchronous with the trap and the condition
(29) is not satisfied. Above, while considering the curves4 - B
and C-D, a constant propagation velocity was maintained
owing to change of the phase . Now ¢ = 1/z/3 and the con-
stant velocity is maintained by changing of the radius in the
range ro <r<r, defined in [4].

An increase (decrease) in the mobility u results in the dis-
placement of the operating margin in Fig. 6 to the left (right)
along the axis h, and down (up) along the bias field axis.
The presence of the coercivity opposing displacement of the
bubble results in shifting the operating margin to the right.
These effects are well known (see, e.g., [3]).

B. Bubble Propagation by a Uniform Gradient Field
and a Parabolic Trap Field

The results for the operating margin shape are not general
since no full analysis of the stability of the basic equations
(32)-(34) has been performed. Prior to such analysis, we
shall illustrate its importance by two simple examples.

Let us analyze a possibility of bubble steady-state propaga-
tion in a field

H,=H-hy(x-vf), h;,Hv>0 (36)

ignoring possible elliptic deformation. In case v=0 there is
no steady-state propagation of the bubble, while for v# 0
steady-state behavior (28) appears to be feasible. Neverthe-
less, a full stability analysis shows that this is not so.
Indeed, assuming, similar to (30)
r(t)=r+6r(t) X(@)=X+8X(t) &r,6X ~exp[-et]
)

we obtain from (2) and (3) in the field (36) the following
stability equations:

8X=hyp-br
21'Mh

si=u [7- So(d)] 8r +uhy -8X, 38)
where So is the radial stability function introduced in [4].
To achieve a stable solution it is necessary to satisfy the
condition €>0. When we equate to zero the determinant
corresponding to (38) we obtain a quadratic equation in €,
in which one of the roots of which can readily be shown to
be always negative. The physical interpretation is that when
the bubble lags behind the propagation field (36) it goes into
a higher-field region. The bubble radius decreases as does the
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Fig. 7. The stability diameter range do(v) <@ <d; (cross hatched) of
the bubble in the parabolic trap (13) vessus its dimensionless velocity
= uv/udnM,. The characteristic length of the bubble maferial I =
0.25. The strength of the trap y = 10~ and the bias field # = 0.23,
The stability diameter range narrows down with the increase of o
with respect to one at 0 =0. See text for an explanation of the
curves N - K and P - K.

propagation force, although the gradient is constant, and the
result is bubble collapse.

The field (13) with ¥ > 0 moving with the constant velocity
v gives another possibility to illustrate the character of the
dynamic effects [27]. For steady-state propagation (F=0,

AF, =0and R =7), (2) and (3) can be rewritten as follows:
T+d +43? + 4yd X3 = F(d) (9
Xo =0/47d, (40)

where X, =Xo/h and 0= v/udnM, are the normalized dy-
namic lag and velocity of the bubble. Analysis of (39) and
(40) shows that the moving bubble diameter (the curve N - K in
Fig. 7) is always smaller than the static one. The velocity
dependence of the bubble collapse diameter do(u) is more
complicated (the curve K - P in Fig. 7). The equation de-
scribing this dependence can be obtained by differentiating
(39) with respect to d:

T-29d? +62/2vd = So(d). (41)

As follows from (4), the equation for the elliptically un-
stable moving bubble coincides with the respective static
equation (15). Fig. 7 represents the solutions of (39) and
(40) which describe the stable bubble diameter range (the
cross-hatched area) as a function of the bubble velocity.
Analysis of (39) and (40) clearly shows the existence of the
maximum velocity Dmgx of the trapped bubble (the point
K in Fig. 7) for a given H and 7 above which the bubble col-
lapses. The respective values of Dpqx are determined ap-
parently by solving simultaneously (39) and (41).

An important feature of the bubble behavior in the above
example is the condition (X, Y) - e when X, Y - . When
the trap depth is finite, there is a possibility for the bubble to
escape from the trap rather than collapse.

C. Determination of the Operating Margins from the
Full Stability Analysis

Let us return now to the propagation field (31) and equa-
tions (32) and (33). Remember that the lower boundary of
the operating margin during steady-state propagation is deter-
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mined by (32) and (33) with r=r,; it is only the minimum
value of &, that remains unknown.

The linear stability equations for (32) and (33) can be
written as follows:

8F=A-8r-B-5¢

§é=—C'5¢~a£;~57 (42)
where
a=u R 0@
B=2puh L “3)
@+ 1)
2urh; ¢ ¢ )
a3 \(¢* +1)?)
The roots of the characteristic equation are
-4+C A+CV B
=Ly %
€12 S ( 3 ) +4 C+a 44

and for a stable solution, the condition €, , >0 should be
satisfied. This yields

r, rhs ¢ 2r
PR TRErOT +¢>’)<S"( )

With regard for (45), (32) and (33) at 7= ¢ =0 describe the
curve H(h;) which is the upper boundary of the operating
margin.

A comparison of (45) with the radial stability condition
for the uniform bias field (see (17) with y=0) shows that
the bubble radius on the upper boundary of the operating
margin is always larger than the static collapse radius ro.
Equation (45) indicates also that the critical phase ¢ = 1//3
cannot be achieved.

The upper boundary of the operating margin according to
(45) is presented in Fig. 6 by the curve U - V. The operating
margin AUV in Fig. 6 widens with the bias field and is shifted
to the right along the /&, axis compared to the formal operat-
ing margin ABCD built earlier. The phase and radius of the
bubble do not remain constant on the curve U - ¥: when
h, oo the phase $—>0 and r—>r, (the curve U~ V approaches
the curve C- D). The minimum h, is determined by the
tangency of U~ VandB- A4 atr=r,.

Note that the condition (45) coincides with the condition
(3H/dr)y, <0. Additionally, one can obtain (3H/d¢), <0.
Thus it is possible to build the lines of constant r and constant
¢ inside the operating margin where the bias field decreases
with the increase of the bubble radius, whereas the bubble
phase increases with the decrease of &,.

Let us consider how the above results are changed if the
field nonuniformity across the bubble diameter is taken into
account. It has been shown in Section III that in the trap
generated by the external field, the collapse radius decreases
and the elliptic instability radius increases and even can be
nonexistent. Qualitative considerations enable us to conclude
that the operating margin can be extended along the bias

(43)
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In the next section it will be discussed in some more

V. DETERMINATION OF THE OPERATING MARGINS
UsING FOURIER ANALYSIS OF THE PROPAGATION FIELD

The determination of the operating margins of a bubble
circuit discussed in the preceeding section is based on the
following approach: the radial equation (2) and the propaga-
tion equation (3) in the steady-state mode determine the
curves H(r, ¢) and h,(r, ¢). Analysis of the stability of steady-
state propagation yields two more equations, one follows
from (4) and describes the lower boundary of the operating
margin and the second describes the upper boundary. The
operating margin shape depends on the mutual arrangement
of these curves H(h;). Note that the stability analysis ap-
proach to determination of the operating margin can, in
principle, be applied not only to the steady-state propagation
behavior.

The specific attempts to predict the operating margins of a
bubble circuit, first of all, face the difficulties in determination
of the field H, with regard for the polarizing effects of the
bubble stray fields and the drive field H,,. For the quasi-
static case, it has been done in [1]-[3]. The propagation
fields in bubble circuits are too complicated for analytical
treatment. Under these conditions, determination of the
operating margins reduces to numerical integration of the
equations for the bubble and the Permalloy overlay, and
formulation of the terms for bubble propagation.

The approach used below is limited to the general analysis
of the propagating field without any numerical approxima-
tions. It does not claim to clear up the character of the mag-
netization reversal in Permalloy. Since (2)-(4) have been
derived for the quasistationary case, the subsequent analysis
is also limited to the almost-uniform bubble motion in the
bubble circuit. In many cases this assumption is not satisfied
(see, for example [28]). However, the analysis discussed be-
low is not only of methodological interest; the qualitative re-
sults seem to be preserved for more general cases.

A. Fourier Analysis of the Propagation Field

The propagation field h.(x, 7) acting on the bubble in an
unsaturated Permalloy propagation circuit should be expanded
in the Fourier integral. However, in some cases as, for ex-
ample, current-access circuits or saturated Permalloy circuits
in stationary conditions the field can be expanded in a Fourier
series. At any rate one can attempt to analyze a few leading
harmonics of the propagation field [29] - [30]. Using the one-
dimensional approach, expand the field in the Fourier series

hy(x,0)= X h2™ exp [i(nwt - mkx)]

n,m

(46)

where w is the drive field frequency and & is the wave number
of the bubble circuit. These parameters are related to the
spatial A and temporal T periods of the circuit by the conven-
tional equations

2 2
w2l gl

T A “n
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The interaction of the bubble with the field (46) has the
energy

By _4nMshr Z h""’

e Exp [i(nwt - mkX)] (48)

where J,, is the nth order Bessel function. Since d/\ is typi-
cally about § to §, we have kr 2 1.

If the contribution of the temporal nonlinearities in the sys-
tem is small we can retain in (48) only the term with n=1.
The contribution of the spatial terms decreases with increas-
ing m. Therefore, if the form of the field (46) is “good
enough,” the general analysis of the bubble circuit opera-
tion can be carried out with a few terms.

B. Bubble in the Traveling-Wave Field

In the analysis below, the major role is played by the har-
monic 1! corresponding to the “traveling wave”:

hy(x, 1) = hy sin (wt - kx +¢p)

¢=wt-kx+go, 49)

In contrast with [29], [30] we do not restrict our analysis
to the case kr << 1. Moreover, we give the analytical descrip-
tion of the operating margins. The equations of the bubble
motion with regard for the field nonuniformity can be written
as follows [31]:

o = const.

[h,sm == F(d))] (50)

6= - 2ukh, Jy(kr) cos ¢ (51)
Af, +p[H+h sin ¢ - Jolkr) + TR 47 - p(3)
A1 A
-38,d ))] -—r'l+ phy sin ¢ - P(kr) A%
=2uh, sin ¢J,(kr), (52)

where the phase ¢ depends now on the bubble center position,
and the factor

P(kr)=2 (7 o ),)12 (kr)+ 4("2 2 kr) “Jy(kr)  (53)

has been estimated to be negative and to have a magnitude of
the order of unity at the range 0 <kr <3.8 (P(0) =0).

In the framework of the approach developed in Section IV,
at first, we shall find the steady-state propagation range

F=¢=Ar,=0 X=wlk (54)

Let us find the maximum bubble velocity in the circuit gen-
erating the field (49). Equation (51) immediately gives the
limitation

* Wi (k).

X= f< 2uh, (55)

Thus the bubble velocity does not increase at all d with in-
creasing d/\ - ratio as it was found in Section IV in the limit
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of kr << 1. The function J, (kr) has a maximum at

d
kr=18 or 3 0.6 where J,(1.8)=0.58. (56)
Of course, a numerical estimate depends on the form of the
propagation field. However, the conclusion about the existence
of the optimum d/X - ratio in terms of the frequency range of
the bubble circuit is valid for the general case, too.
Further analysis will be limited to the wide enough range
nd
0<kr=T<3.8 where Jp,>,(kr)>0 (W)
which includes the practically useful range d/\ ~ % to % The
stability analysis of (51) with the condition &7 =0 yields the
phase variation range:

,%<¢<0, (58)

When the condition (58) is not satisfied the bubble reveals
the so-called anomalous behavior [29] in contrast to the single-
trap model. Equation (51) which describes the anomalous
mode has the same structure as one of the Slonczewski equa-
tions [32] for the behavior of the plane domain wall beyond
the Walker limit.

C. Operating Margins for Steady-State Propagation of a
Single Bubble in the Traveling-Wave Field

For the bubble circuit with the field (49), the operating
margin in the “bias field-propagation field (H - ;)" plane
separates the steady-state propagation (54) from the col-
lapse, runout, and anomalous behavior. Similar to Section
IV, we shall determine at first the formal operating margin
in the 67=0 approximation; however, now we take the
field nonuniformity across the bubble diameter into ac-
count. This determination yields the correct lower boundary
of the operating margin ((52) is the stability equation) and
gives an idea of the operating margin shape.

Using (50)-(52) we can determine the formal operating
margins (see Fig. 8(a)-(c)) corresponding to various relations
between the collapse and runout radii ro, and the period
A = 2n/k of the bubble circuit [31].

Shape variation of the upper boundary of the operating
margin (C - D) is due to the reversal of the sign of Jo(kr) in
(50). The phase ¢ decreases with the increase of h, along
the curve C-D (¢~ -n/2 and the bubble gets to the field
minimum). At the point C the phase is zero and the propaga-
tion field is AS = w/2ukJ, (kro).

Along the curves C - B we have the maximum phase ¢ =0
and ro <r<r,. The anomalous propagation mode is to the
left of the curve C - B. At the point B the propagation field
has the value of k2 = w/2ukJ, (kr,).

The curves A - B describing the lower boundary of the
operating margins deserve special consideration. For the
steady-state behavior, (52) gives with the use of (50) the
elliptic deformation which is finite in the whole range of
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Fig. 8. The formal operating margins for the traveling-wave field (49)
in terms of the plane dimensionless bias field and amplitude of the
traveling wave for three different cases of correlation between average
diameter of the bubble and space period of the traveling wave (D =
w/kudnMg=001). The operating margin of the form shown in
Fig. 8(a) is qualitatively valid for kr < 2.4; in Fig. 8(b) krg < 2.4
and 24 <kr, <3.8; in Fig. 8(c) kro > 2.4 and kr, <38. For the
last case (Fig. 8(c)) the condition (S7) is not fulfilled; therefore, the
curves of constant bubble diameters 4’ - B’ or A” ~B” can be con-
sidered as formal lower boundaries of the operating margin.
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the Mas fields:

Ar 2h, sin ¢ - J,(kr)

r 6mMh
r

(@-5:@) +hysing -P(kr)]

(59)

This is associated with the nonuniform nature of (52). For-
mally, we can now define 7, as the value corresponding to
the vanishing denominator of the right side of (59) when the
orientation of the ellipse is changed. Clearly, when kr~1,
Ar; or another higher-order term of bubble deformation is
sensitive to the exact shape of the propagation field. There-
fore, a natural definition of the lower boundary of the op-
erating margin would be a condition that Ar, /r be less than
a certain threshold beyond which there occurs bubble circuit
failure ((52) becomes invalid). In Fig. 8 the lower boundary
of the operating margins is conventionally determined by sub-
stituting into (50) and (51) a value of radius » =r; which sat-
isfies the inequalities given in Fig. 8.

From Fig. 8 it is seen that the maximum bias-field margins
exist when

kro <24 and 24<kr, <38. (60)

Evidently, the estimated range of the d/A - ratio at which
the bias field margins are maximum depends on the specific
form of the propagation field; however, the conclusion about
the existence of the optimum range of the bias field margins
remains valid in the general case.

It is interesting to note that there is a possibility for the
radial field in (50) to vanish [Jo(kr=2.4)=0], while the
propagation field in (51) is not zero [33]. For kr=3.8 the
propagation field in (51) is zero, while the radial field in (50)
does not vanish.

The exact position of the upper boundary of the operating
margin can be found from the full stability analysis of (50)
and (51) analogously to the analysis of Section IV. Similar
to (42), the following equation can be derived in this case:

I (2 Phkdi kD)
1 g (2 rhakdiGn)
n S“(h) P

hakr*Jo(kr) Ji(kr) cos’¢
2aMghJ, (kr) sing

Equation (61) should be considered together with (50) and
(51) for 7=¢=0. Then, the dependence H =H(h,) is ob-
tained by eliminating 7 and ¢ from the above equations.

Considering the static case ¢ = -m/2 we can readily see that
the second term in the right-hand side of (61) corresponds to
variation of the collapse radius due to the field nonuniformity.
This effect is similar to (17). The third term at the right-hand
side of (61) gives the dynamic effect of the collapse radius
variation similar to that given by (45). The latter effect is
due to the fact that the radial field affecting the bubble de-
pends on the phase which, in its turn, depends on the bubble
radius in accordance with (51).

The existence of at least three types of operating margins
shown in Fig. 8 follows now from estimating the sign of the

(61)
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Fig. 9. The exact extreme left points of the operating margins for the
propagating field /; (see (64)) versus the dimensionless parameter A
(see (63)). For comparison, the dependence of the formal extreme
left point A/d, on A is presented. Note the increase of the dynamic
shift with respect to k, with the increase of propagation frequency.

derivative
A __ Jokn)
dh, sin ¢ (2

calculated along the curve (61). However, the operating
margin types shown in Fig. 8 are not the only ones possible.

Let us analyze now (61) for small variations of the propaga-
tion field across the bubble diameter (kr <<1) when the
second term can be neglected:

2 27-1/2
l<so(ﬁ>- = [1 <7A—x) ]
o) Ral \ha

~ h
L pme
2nMguhk

T 4nMy

n

(63)

The condition 4 << 1 guarantees the quasistatic character of
propagation. When w =0, (63) is transformed into the con-
ventional condition for the radial stability of the bubble [4].

Analysis of (63) shows that on the upper boundary of the
operating margin r > ro, where 7, is the collapse radius in the
uniform bias field. The operating margin widens along the
bias-field axis and is shifted to the right along the propagation
field axis (see the curve U - V in Fig. 6). The propagation
field at the point U is given by (63) forr =r,:

ay_A
RU=4 64
L (64)

In Fig. 9 the positions of the exact extreme left point and
the formal extreme left point of the operating margin are
plotted.

Generally, the point corresponds to minimum of 4, is given
by the intersection of the upper boundary of the operating
margin with the elliptic deformation curve.
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D. Contributions of Higher Order Fourier Terms of the
Propagation Field to Development of Operating Margins

The concepts of the preceding section are concerned with
the steady-state propagation of the bubble. In case of the
real bubble circuits they contribute to the bubble dynamics
and sometimes determine its general character [30]. Given
below is a qualitative analysis of the effect on the operating
margin produced by the nonstationarity of the propagation
field.

a) Assume that the Fourier expansion of the propagation
field (46) has two more terms beside the traveling-wave term:

hy = h(k)sin (kx + A, ) +h(Q) sin (1 + Ag). (65)

The spatial harmonic 4(k) has the localization region of the
order of k™' and the temporal harmonic h(2) has the fre-
quency £ (A, and Ag are the respective phases).

Now, (2)-(4) do not have a steady-state solution. How-
ever, treating (65) as a small perturbation to the solution de-
scribing the steady-state behavior for the traveling-wave field
we can see that the operating margins of Section V-C will be
slightly changed. Besides propagating, the bubble oscillates:

87 | ~n(x)sin ("kﬂ»« AK)

8¢= (66)
5(Ar) | ~p(Q)ysin (Qe+Ag)
with two characteristic frequencies
w, = % w W =Q 67

where k is the wave number of the bubble circuit (47). In this
case the bubble is as well propagated, however, the oscillation
amplitudes should be limited by certain values beyond which
the bubble circuit fails.

For a given type of bubble circuit, the ratio between the
mean propagation velocity (the steady-state velocity) and the
propagation oscillation velocity has been shown to be effec-
tively constant with varying propagation frequency [28]. Ac-
cording to (66), this fact suggests that in the experiments of
[28] the spatial harmonics of the propagation field made the
major contribution to the oscillations. In principle, a more
careful analysis allows making conclusions about the shape of
the propagation field.

b) In many cases the higher-order terms of the propagation
field are by no means small and the Fourier expansion of the
field becomes not reasonable. It can be primarily caused by
the discontinuities of the Permalloy overlay (e.g., T-bar transi-
tions, etc.) or the potential barriers arising from the specifics
of the interaction between the bubble and the unsaturated
Permalloy. The condition for overcoming such “weak points”™
(potential barriers) of the circuit can make a decisive contribu-
tion to the development of the operating margins. The bubble
can clearly be trapped by a magnetostatic trap or collapse at
the weak point of the bubble circuit. In this, case the left
boundary of the operating margin is determined not by the
appearance of the anomalous propagation but by the condi-
tions of overcoming of the respective potential barrier with
regard for the coercivity of the bubble material. Just this
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way, the problem of building the quasi-static operating mar-
gin has been formulated in [1]-[3]: one should find the
minimum drive fields H,, which make possible propagation
of the bubble through the potential barrier at permissible
variations of the bubble diameter (the bias field). Note that
if the weak point has been overcome, the left boundary of
the operating margin for the dynamic case will be determined,
as before, by the condition of the bubble motion synchronous
with the trap.

One could introduce into (49) to (51) a term accounting for
the trap at the weak point, but the equations themselves would
become, apparently, inapplicable since the bubble motion
would be essentially nonstationary. Generally, it is possible
to pose the problems which present a dynamic generalization
of the quasi-static formulations [1]-[3]. What are the con-
ditions, for example, for the bubble propagating with the
traveling wave to overcome a weak point of the circuit, and
how large will be the phase distortion?

VI. BUBBLE SYSTEM IN A BUBBLE CIRCUIT

Bubble propagation circuits are usually filled with bubbles.
The interaction between the bubbles makes a significant con-
tribution to the forming of the magnetostatic traps in the
bubble circuit. We shall limit ourselves to considering the
direct magnetostatic repulsion between the bubbles in the
dipole approximation and its effect on the operating margins.®
For large enough circuit periods the repulsion energy of the
bubbles is

Eyp=m -maRY, (68)

where m, , = 2tM;h(r, ,)* are the magnetic moments of the
bubbles (r, , are certain bubble radii) and R , is the distance
between the bubbles which can be written in terms of phase:

2mn+t ¢y - ¢,

R,,=
1,2 3

. (69)

Here n is the number of the spatial periods between the bub-
bles, and & is the wave number of the bubble circuit (47).
Using (50), (51), and (68) we obtain the following equations
for the two-bubble system in the approximation kr << 1:
2nMsh .~ ~
T @) - D

12

Fia =R [—H— hgsing, , +

~ 21!M;hr§ i 0
RI,Z
Xy = uhokry ; cos ¢, + 6nMophr o3, [RY ;. (71)

Equation (70) shows that besides the bias field / the bubble
is affected by the dipole field of the interaction (68) which
results in shifting down the upper boundary of the operating
margin. In accordance with (71), the effective propagation
fields differ by the signs of the dipole field contributions. In-
troducing the phases ¢, , into (71) and analyzing the steady-
state propagation mode 4},,, =0 we can easily derive the in-

SThe indirect Permalloy-mediated interaction is in some cases more
important. Nevertheless, we simulate the real interaction by (68).
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equality similar to (55):
61rM,uh kror}
R4
h,> 1.2 (72)

uk?ry cos ¢y

Equation (72) indicates that for a given propagation frequency
w the propagation field 4, increases as compared with the
single-bubble case. A similar result has been obtained with
numerical calculations [34].

Thus the upper boundary of the operating margin (see Fig.
7(a)) should be determined for the completely filled bubble
circuit. On the contrary, in our model the lower boundary of
the operating margin should be determined for the case of a
single bubble in the circuit.

Confining ourselves to a static approach, let us now con-
sider the role of the collective effects in forming the upper
boundary of the operating margins [35]. At first, in the
limit 7,,, =,,, =0 we shall discuss the case of two bubbles.
The stability equation follows from (70):

2
i d
T+d,,8-F@,,)+ “ 2

=0 (73)

where R =R/h, and other designations were introduced above.
The usual procedure of stability analysis with respect to varia-
tion d,, =d +8d,, gives the condition of radial stability of
two bubbles

~1d? %
T4g 75 <So(d). (74)

If in (74) there is an equality then one of the two bubbles
collapses. This process occurs at bubble diameters exceeding
those of the isolated free bubbles and as readily follows from
(73), it takes place at the bias fields H
w A an
Hn~$<H<Ho. (75)
Here l?o and z?o are, respectively, the collapse field and diam-
eter of the free isolated bubble.

This process is interesting because it gives the real random-
nature mechanism of bubble spontaneous annihilation [36],
[37].

At last let us consider the bubble propagation circuit with
a spacial period of X completely filled with bubbles. Taking
into account interaction (68), from the expression of system
total energy, we obtain the equation for determination of
the ground state

?+Hd+@

-F(d)=0 (76)
where A = Ak and ;(3) Sy~ 1202

Now, space-nonuniform variation d d+§d j(x) in the
vicinity of the ground state will be taken into account. The
quasi-elastic energy after natural (in this case) transforma-

tion into Brillouin zone representation is
pn T 5
L [So(d)+ 3 (7) R(K)- 1] 16d,1?

’ )

AE=
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where

R()= Z

cos K)\n

(78)

and k(-m<kA<wm) is the wave number. The loss of sta-
bility takes place at the bubble diameter obtained from the
equation
o 1 (.? )3 -
So(d)+—{z) ‘R(K)-1=0. (79)
2\A

The case k =0 corresponds to uniform oscillations of the
bubble diameters when R(0) =¢(3). With the increase of k
the value of R(x) monotonically decreases and at the edge
of the Brillouin zone R(n/\) =~ 3( (3). This situation relates
to collapsing each second bubble in a succession of bubbles
in the filled up propagation circuit.® Just this process will
define the upper boundary of the operating margins. A
similar effect was theoretically shown and experimentally
observed in bubble lattices [38], [39].

VII. SUMMARY AND CONCLUSIONS

1) Equations (2)-(4) for the bubble macroparameters being
supplemented with (9) for the Permalloy subsystem compose
the base for the analysis of bubble statics and dynamics.

These equations are related to the range of the slight time-
variations of the bubble macroparameters. Besides, this range
not only lies below the well-known limits for the steady-state
propagation of the domain wall [7], [8], but also requires a
domination of the dissipative forces over the inertial ones.
The equations for bubble motion do not take into account
such effects associated with the domain wall structure as, for
example, the hardness and gyrotropic deflection of the bubbles
[12], [13], dynamic conversion [40], and ballistic overshoot
[41]. Finally, there are effects which do not appear within
the framework of the variation approach used in the paper,
for example, widening of the domain wall and generation of
the spin waves by the wall during its motion [42]. The ex-
tension of the applicability range of (2)-(4) depends on the
degree of the development of the principal problems associated
with the dynamics and statics of domain walls and bubbles.

The specific character of the Permalloy subsystem is, actu-
ally, ignored throughout the analysis. Even in the framework
of the continuum model which apparently simplifies the situa-
tion, there are available only individual numerical results pro-
viding no self-consistent solution of (2)-(4) and (9). The
propagation fields forming the magnetostatic traps which
propagates the bubbles in the bubble circuits are too com-
plicated and inconvenient for analytical treatment even in the
case of saturated ferromagnetic features or conductor propaga-
tion circuits; so approximations of the propagation fields have
to be used.

2) The stability conditions for the bubble at the trap differ
from the stability conditions for the uniform bias field (Sec-
tion M) [1]-[3], [5], [23], [24]. The radius and field bub-

SShorygin informed us that he observed this effect in the chevron
detector filled up with the stripe domain.
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ble stability range depends not only on the properties of the
bubble material but also on the shape of the field. The latter
condition is important for understanding bubble behavior in
real circuits.

3) Propagation of the bubble by a single trap is discussed
in Section IV [1]-[3], [5], [23], [24]. Development of the
operating margin is formulated and discussed as the problem
of the stability analysis for the steady-state bubble propagation.

4) Section V deals with the case when the propagation field
generated by the bubble circuit can be represented by a travel-
ing wave. The operating margins are determined as a general-
ization of the results [29]-[31]. The genesis of the operating
margins involves the effects due to the static nonuniformities
of the propagation field across the bubble diameter as well as
the specific dynamic effects. The conclusions made about the
existence of the optimum ratios between the bubble diameter
and the bubble circuit period with regard for the propagation
velocity and the bias-field margin seem to be valid for the
general case.

5) Section VI discusses the effect of the higher order terms
of the propagation field or the potential barriers on the op-
erating margins given in Section V. In the real bubble circuit
the higher order terms are not necessarily small; the “weak
points” of the circuit associated with these terms can play a
dominant role in the development of the operating margins.

Generally, the problem of the operating margin determina-
tion is not of a steady-state nature; the solution of this prob-
lem implies finding the conditions of bubble propagation in
the circuit using the full system of equations (2)-(4) and (9).

6) The equations obtained in Section VI take into account
the magnetostatic repulsion in the bubble system and its effect
on the development of the operating margins.

APPENDIX
DERIVATION OF THE BUBBLE MOTION EQUATIONS

The equations of bubble motion can be derived by varying
the action

t
s,,=j dtjﬂL(?,t), L=T-W (A1)
£

and the dissipation function

t
Fy =f dtfd? F(7,0).
n

The canonical equations have the following form:
DA 8 oL L oL OF
8rdqy  0x; 0(0qk/0x) dqx ddx
Here gy, are the generalized coordinates describing the system.

The density T of the kinetic energy which enters the density
of the Lagrange function L (A1) has the well-known form

(A2)

(A3)

M,
T=-T"¢cos(9 (A4)

where the generalized coordinates 8 and y are the polar and
azimuthal angles of the magnetization vector M; (the angle
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0 is measured from the normal to the field which coincides
with the easy-axis direction, and the angle y is measured from
the axis Ox in the film plane xOy, as shown in Fig. 1) and
v > 0 is the gyromagnetic ratio.

The potential energy density consists of the following terms:

W=Wex + Wyt Wy + Wyys. (AS)
Here the exchange energy density
Wex = A[(V0)? +5in? 0 (Vo)’] (46)

is characterized with the constant A. The anisotropy energy
density is

W, =-Kcos?8, K>0 (A7)
and the Zeeman energy density in the field 4, is
Wy =-MsH, cos 0. (A8)

The magnetic dipole energy Wysg contains at least three terms:
the energy providing for the bubble stability, the energy
2mM} localized at the wall, and the energy resulting in wall
twisting.
The density of the dissipation function is
a

F(F, ==

2 (A9)

M [62 +sin? 0 ¢?]

y
where o is the dimensionless Gilbert damping constant.

The calculations below aim at deriving (A1) and (A2) for
the bubble by substituting into these equations the trial func-
tions which are selected due to the fact that the bubble
material has a large parameter (1).

It is known [32], [43] that a good trial function for § in
the local frame of reference of Fig. 1 is an equation from
Bloch wall theory

sin=ch™ (%) cosb = zh('JA—")

where A=+/4/K is the wall width. The bubble shape is
describe with the equations

r=r(t)+ Ary(r) - cos 28

(A10)

p=VEXOPFH-T@P  wg=21 (a1
where p and § are the polar coordinates with the origin at the
bubble center. It is assumed that 7 >> A and the angle (B, t)
remains independent.

The parameters r, R, Ar,, and ¢ are the new generalized
coordinates of the system and the motion equations for them
are derived after integration (A1) and (A2) in accordance with
(A3). It is shown below that p does not enter the equations
for r, R and Ar, in the steady-state approximation y =0
when R = const (see Fig. 1).

The term ~Vy in (A6) can be ignored as compared to the
first term ~A™" since Vg ~ n/r (n is the number of the vertical
Bloch lines which is assumed to be small here). Equations
(A6) and (A7) determine the surface bubble energy ~vK so

that the contribution of the local dipole energy to the surface




[image: image15.jpg]ANDREEV etal.:

term can also be ignored. For the same reason we ignore the
dipole term which causes the twisting of the wall.

Using the fact that the full temporal derivatives can be
omitted, the variation of the Déring kinetic energy (A4) is

M, ;
5T=T:[¢sinoaa—ssme.sw]

and under the steady-state conditions 6 =0(7 - R(r)), p=
o(F- R (1)) one comes the the familiar gyrotropic contribution
s7=-2s (To x To)x K] 6. (A12)
b
Under the same steady-state conditions the last term at the
right-hand side of the dissipative function (A9) becomes
negligible compared to the first one. The gyrotropic term
defining the deflection of the bubble can be neglected if

|8T/8R| << |8F/8R|, where F is the dissipative function (A9).
For the bubble domain this condition can be rewritten

ul?
+2)—| 1.
(n+2) W] 1 (A13)
Here p = yA/a is the domain wall mobility.
Thus (A3) can be written as
OE[0q; = 3F /04 (A14)

where q; = (r,R, Ar,). The bubble energy E, is given by (4,
eq. (43)], It is convenient to express the combination of F' (d)
and Ly(d™') functions in [4, eq. (34)] by means of more
familiar combination using the directly verifiable identity

AF @45 1@ - 1,0 = @DIFE) +35:).

(A15)
The dissipation function in (A14) is
R2+AR
Fy= —fZ"AZJ"’ [r" i e : ”]. (A16)

Equation (A14) yields (2)-(4), the latter merely being a sym-
metric part of the Onsager relations for the bubble in the ap-
proximations discussed above.
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