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Motion equations for the magnetic bubble domain containing a small number of the Bloch lines
are derived in the framework of the Lagrange formalism. The analysis of the Déring kinetic term
is given in the nonstationary case. The linear responses of a single bubble domain are considered
and the stability of the pair of the vertical Bloch lines of opposite signs is examined. The threshold
magnitude of the driving magnetic field is found. Static 2D domain wall structures describing
the intersection of the two Bloch lines are obtained.

Bewegungsgleichungen fiir die magnetischen Blasendomiinen, die eine geringe Anzahl von Bloch-
linien enthalten, werden im Rahmen des Lagrange-Formalismus abgeleitet. Die Analyse des
Déringschen kinetischen Terms wird fiir den nichtstationdren Fall durchgefithrt. Die linearen
Response einer einzelnen Blasendomine werden betrachtet und die Stabilitét eines Paares verti-
kaler Blochlinien mit entgegengesetzten Vorzeichen untersucht. Dabei wird der Schwellenwert des
treibenden Magnetfeldes gefunden. Es werden die statischen 2D-Dominenwandstrukturen er-
halten, die die Uberschneidung der beiden Blochlinien beschreiben.

1. Introduction

A set of dynamic equations for the magnetic bubble domain was obtained in [1]. The
equations describe the time evolution of the bubble radius, the position of its center
at the film plane, and the bubble wall structure. The latter equation, as well as the
contribution of the wall structure to the two former equations, are usually treated
in the framework of the very effective Bloch line (BL) model [1 to 3]. In this model
the real distribution of the wall magnetic moment is approximated by the BL con-
figuration, the time evolution of which is determined by ordinary differential equa-
tions. The theory of the elliptic distortion of the bubble in this approximation was
given in [4].

However, for such problems as BL generation, stability, and BL intersection the
BL model approximation is too rough. The general approach to the bubble dynamics
based on the partial differential equations for the wall structure is needed, though
it has yielded, so far, modest and mainly numerical results [5, 6].

In this paper the nonstationary equations of motion for bubbles are derived within
the Lagrange formalism taking into account the dissipation function [5]. The choice
of the trial functions based on the assumption of the large Q-factor is discussed below.
The Déring kinetic term and its functional derivatives are represented in a single-
valued form, so that the problem of the translational momentum definition [7] does
not arise here. In contrast to [5], many small terms in the equations are omitted.
The number of the BL’s is assumed to be small (the bubble is neither hard, nor soft),
and the cross-section of the bubble is circular. If reformulated in the language of the
BL model, the equations"derived here essentially coincide with those of [1 to 3].
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The linearization of the equations of motion about the equilibrium state leads to
the dispersion relations for the oscillations of the bubble domain. The spectra of the
linear operators for the winding and unwinding VBL’s in the bubble domain wall are
analyzed. A number of low frequency resonances are found.

The stability of the well-formed vertical BL (VBL) cluster consisting of two z-BL’s
of opposite signs in a moving domain wall is examined. The cluster may be generated
by the local Walker breakdown caused by the imperfection of the film material or
by the inhomogeneity of the applied magnetic field. The threshold value of the wall
velocity as the function of the distance between VBL’s required to stabilize the growth
of the cluster is found by solving the Nagumo problem for the nonlinear parabolic
equation.

Also the exact static 2D magnetization distributions are obtained describing the
intersections of two BL’s in the domain wall. These solutions may be used in the 3D
case as well.

It should be remembered, however, that the results mentioned above ignore the
existence of the horizontal twist of the wall and therefore are applicable only in the
vicinity of the film middle-plane.

2. Equations of Bubble Motion

The magnetization distribution M(r, {) in a uniaxial film of thickness % is shown in
Fig. 1. The center of the bubble of radius  in the laboratory frame of reference 20y
is defined by the vectorR(X(t), Y(t)). The center of the moving local frame of refer-
ence 2’0y’ is placed in R, and it is convenient to use polar coordinates p =
= (& — X2+ (y — Y ()?)2 and tan f = (y — Y(0)/(x — X(t)). The important
variable p(f, z, t) is the angle between M;,, (the projection of M at the wall center on
the film plane) and the normal to the bubble surface.

The circular bubble isplaced in a film whose Q-factor is large. This means that the
uniaxial anisotropy field is greater than the magnetostatic fields (and the external
fields, too). If r > A = (A/K)Y* (A4 is the conventional width of the Bloch wall;
A, K > 0 are exchange stiffness and anisotropy constants, respectively) the following
Bloch-like trial functions in the local frame of reference may be chosen:

sin § = cosh™? (%@)J cos 6 = tanh (%ﬁt)—),
0, = —A1sin0, (1)
=y 2.

The above simple Bloch form of the magnetization polar angle [8] is really good,
because it reduces the dimensionality of the problem, omitting only effects of the
order of 1/@Q, such as Walker contraction of the wall, radiation of the bulk spin waves
by the wall [9], or the influence of the field induced magnetization tilt in the domains
on the Néel-Bloch wall transition [10].

There are two characteristic lengths in the problem: 1) Bloch wall thickness 4
along the normal to the wall surface, and 2) BL width 4 = AQ'2 along the wall
surface. Besides reducing the spatial dimensionality of the problem, the inequality
/A > A also reduces the integrals of the volume magnetic charge to the local Winter
form.

The trial functions (1) must be substituted into the Lagrange and dissipation func-
tions for subsequent integration over space coordinates. The standard Lagrange
procedure gives the equations of motion for the bubble parameters r, R, y.
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In the following the notation

P 04 024
A=E'EAZ: Am=%- AmmZW;

A=X,Y,R,p,9, etc,
m=ux92pf, ete
is used.

The Lagrange function L = 7' — w is the difference between the Déring kinetic
energy T and the potential energy w. The Déring kinetic energy for the bubble is

A F
T:f——[ [(cosﬂ—l)de:

v

b2 27

sin fX — C,OS,Q) ) @

r

Ay ]

= | dz f dag Tz(lp + 95
Z o
where ¢ =y — f (see Fig. 1) and y (> 0) is the gyromagnetic ratio. It should be
noted that the integrand in (2) is a single-valued function, because in contrast to ¢
the derivatives § and ¢4 are continuous in f and z (Bloch points are excluded). To
find the variational derivatives of (2) one must take into account the time dependence
of the local polar coordinates via R(t). One gets

ST = f‘?;”l [w + pa(sin BX — cos BT)y 8r +

(st <%¢,, sin B4 hpﬂsinﬁ>)8X +
4(~S‘\" + <%1})ﬂcosﬂ + fyp eosﬂ>)8Y —

roo. 5 < :
~%TR (7 + cos X + sin fY) qu}. 3)

‘ 1y Fig. 1. The frames of reference for the equations
+ " of bubble motion
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The angular brackets denote the averaging

2n

2
LDy = (@ak)-t [ dz [ a4pL..]. (4)
—h2 0
The non-integer mean winding number of the bubble is

S =<1+ ®)
Changes of S are caused by injections of the Bloch points from the film surface into
the VBL’s.

The contributions of exchange and magnetostatic energies are (see [5])

w = 2ehr (o + 2AA I + r2F)> +

2r/h
+ (—4m* M3 [ F(x) dox — 2a2Arh M{H (2) cos p) +
0

+ 4 M2 Ar2mh{cos? p)) , (6)

where A is the exchange stiffness, o, = 4(AK)'? the surface density of the Bloch-
wall energy, F(x) the force function of the Bobeck-Thiele theory, and Hy(z) ~
=~ 8M tanh~! (2z/h) the magnetostatic field generated by the surface magnetic poles
causing the horizontal twisting of the wall.

The bubble dissipation function is

Py = %fM*dV ~ L;” Ar2ah{ A2 — R2) + 9, ()
where « is the Gilbert damping parameter.

The standard procedure gives immediately the following equations of bubble
motion:

( . 5 eI 2
P %1 (‘u/-os BX + sin p¥) = 21MY [Alfyv:,- + fl—,we + siny cosy —
£ %
(2) . Hip .

) D oy

sar Siny 4 gypsin x—v—5| (8)
; a4/. sin X
7 — pHpr(r, R, 1) =;<w + i 9)
R = —pHg(r, R, 1) — ZSA[’:;X R_4 WZ#’” 7-§<zp>, (10)

a) (8) describes the bubble domain wall structure. Its right-hand terms are, re-
spectively, the contributions of the exchange energy, Winter local magnetostatic
energy, horizontal twisting of the wall, and external in-plane magnetic field Hi,
(1 is the angle between Hj, and Oz-axis). The left-hand terms of (8) are the dynamic
factors affecting the domain wall structure.

b) (9) describes the radial dynamics of the bubble. The effective field of the static
Bobeck-Thiele theory Hpy in (10) is

9 9 (2
Bise = — B0 — 2Ly IO HRTCHR], an

r

where H, is the radial component of the applied field H, (see [11]) which for a small
field non-uniformity is merely H, at the bubble center; I is the characteristic length
of the bubble film and F(x) the force function. Returning to (9) p = p A/« is the

A S N 4
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mobility of the Bloch wall. The last right-hand term in (9) is negligible, in so far as
the apparent inequality, R< QV+[S (where Vi is the Walker breakdown velocity)
is satisfied. Under this assumption the contribution of the wall structural non-
uniformities determined by (8) is small compared to the term ~ { in (9). The circular
shape of the bubble is not disturbed in this approximation, which explains averaging
over  and z in (9) and (10).

¢) (10) describes the translational bubble dynamics. The first right-hand term is
the effective driving field [11] which for small non-uniformities of the applied field
H, is merely 2r VI ,. The second term is the conventional gyrotropic response of the
bubble as a whole. The interaction of the radial and translational degrees of freedom
of the bubble is described via the nonlinear, nonstationary third term, where

V1w = (sin fi + cos ff) wg/r . (12)
In the BL model this term was introduced in [1] to describe the translational response
of the bbuble caused by the VBL gyrotropic rearrangement when the bubble radius
changes. It should be noted, however, that this interaction is different from that of
the conventional self-motion interaction mechanism [12]. The last term in (10)
describes the inertial properties of the bubble and, in particular, the effect of the
ballistic overshoot. The vector
hi2 27
1 oo G .
Yy = = ( dz f dp (sin Bi — cos fj) wp (13)
B
—r2 0
is proportional to the total translational bubble momentum [7].
In conclusion. it should be noted that under quasi-stationary conditions equations

(9) and (10) for the bubble macroparameters r and R are not linked to (8) for the
domain wall structure [11].

3. Excitation Modes of a Single Bubble

The above equations of motion (8) to (10) provide a basis for discussing the linear
responses of a single bubble. Below the modes of the excitation spectrum are assumed
to be undamped (z = 0). The twisting of the bubble wall is taken into account in
a qualitative manner by exploiting the well-known result (see, for example, [13])
that it increases the Diring wall mass and, consequently, lowers the resonance
frequency. The large in-plane magnetic field H;,/8M >> 1 suppresses twisting in
a greater part of the domain wall and simultanously transforms the bubble state into
§ = 0. For the S = 0 state the results obtained below are quantitative.

a) To demonstrate the application of (8) to (10) let us consider at first the oscilla-
tions of the free S =1 bubble. The Bobeck-Thiele equation Hgr(r) = 0 for the
equilibrium bubble radius immediately follows from (9): the right-hand side of (8)
is satisfied by two Bloch-like structures of opposite chiralities: g, = +/2. For
a small perturbation about the above ground state w(f,t) =y, + dp(8, ¢) and
r(t) = r + 3r(t) one has

. X cosf 4 T si
Bpie e ST R cosfif Tainf) (14)
Ay M A (1 + A%[r?)
It is seen that the radial equation (9) decouples from the translational equation (10).
The radial mode resonance frequency [14] is

k /": AJ 9
0,(0) = -~ = ; (4o M) V% (S.,(%’)—
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where £, is the stiffness of the bubble wall, m, = (2my24)~! the Déring wall mass,

and Sy(2r/k) the radial stability function. Assuming the optimum bubble values

Ik = 0.25, r = 41 (Ajr = (8Q)™), and M = 10 Gs, Q@ = 10, » = 1.76 X 107 Oe s one

gets the estimate w,(0) ~ 107 s71. In the vicinity of the bubble collapse w,(0) — 0.
Now turn to the translational equation (10). Using (14) gives for (13)

(yy = RldmyM A, (16)
where the terms A2/r* <1 have been omitted. Equation (16) takes the form (S = 1)
R+ ofn xR =0,

amn
wg = 8y M Alr .

The effective stiffness leading to the resonance frequency (17) for the bubble trans-
lational displacements originates from the gyrotropic term in (10). Again assuming
the above optimum values one gets w, =~ 6 X 107 s~1. For the case of the arbitrary S
this mode was obtained in the phenomenological approach in [15].

b) More realistic results can be obtained, if the bubble domain is exposed to the
in-plane field H;,/8 M > 1. The ground state solution of the right-hand side of (8) is
9o = % — P, that is the wall magnetization is parallel to the applied field. The Déring
resonance frequency given by (15) transforms now into

(Hyp) = w(0) (Hip/8M)'? . (18)

This frequency corresponds to that in the case of the plane wall [16].

Because the bubble is in the § = 0 state, the translational frequency corresponding
in (17) is zero. A finite translational frequency may be obtained, if the bubble is fixed
at the film plane by the potential well. If the well is of magnetostatic origin, then the
fixing field entering into the right-hand side of (10) is Hy = r - VH,/2 for small field
non-uniformities. Instead of (16) now one has (y) = (R/4myM A) (8M|H;;). The
resonant translational frequency of the fixed § = 0 bubble for the 1D field non-
uniformities is

2
o VzanM (e S (A (Epfsanye (19)
The stiffness of the well is proportional to the term d2H,/dX* which may be made
small. The low-frequency resonance (19) can be important for the bubble dynamics
in propagation circuits.
¢) The case of the arbitrary S requires more elaborate calculations. The equation
for the ground state of the bubble wall follows from (8):

A2
ZS¥ + siny® cosp® = 0. (20)

First, let us consider the winding VBL’s, that is the case when the VBL’s have
equal signs. The solution of (20) is given by
sin 9@ = sn (2nK(k) (B — o), k)

cos p® = en (2nK () (B — fo)fm, E) ,

% @
== ;K(k) dn (20K (k) (B — Bo)/m k) »

where sn %, cn u, dn u are the elliptic sine, cosine, and delta of the amplitude, K (k)
is the complete elliptic integral of the first kind, f§, an arbitrary initial angle. The
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parameter k is determined from the boundary condition
kK (k) = ar[2n4 , (22)

where n =1, 2, 3 ... is the number of the VBL pairs. It may be shown by direct
integration that the bubble winding number (5) is given by S = 1 + n. For the follow-

ing discussion it is important to find the spectrum of the first-order operator f/w for
the right-hand side of (8). Using (20) and (21) one gets

Ly 8y = —dyss + (rA)? (2502 2nKpf) — 1) Sy = e, 3p . (23)

The operator in (23) coincides with the corresponding one in the case of the winding
plane Bloch walls [17]. The envelopes of its spectrum are

ew1 =0, 3y, = Cy dn u; u = 2Knf[x,
ey = (r'h1)2(1 — k), Sy, =Chenu, (24)
ews = (r k.12, Syy = Cysnu,

where C o 3 are arhitrary constants. The first two modes constitute the envelopes of
the translational VBL displacements, where the lowest mode is merely the VBL
uniform rotation. The lower boundary of the continuous “spin-wave” portion of the
spectrum ey is given by Sy;.

If the VBL's do not overlap (r/4 > 1, n is not large, and k — 1), the spectrum
coincides with that for a single plane Bloch wall found by Winter [18]. In the region
k =1 the lower two modes constitute a very narrow band separated by the large
gap ~(r/A)? from the continuous “spin-wave” branch &,;. This fact allows us to take
into consideration only the uniform rotation VBL mode &y, in the following discussion.

One is interested in the radial oscillation bubble mode due to the uniform VBL
rotations. Because ey; = 0 the effective VBL stiffness term should be introduced
into (23) to obtain the finite value of the resonance frequency. According to [1] the
VBL stiffness may be caused by the interactions between VBL’s. The equilibrium
distance separating VBL’s of the same sign is /s, ~ 0.2 and it is determined by the
balance between the nonlocal magnetostatic attraction and the exchange repulsion.
Using the results of [1] one obtains the following wall surface energy density:

_ daM? (A A\? 35\t 4nPM? A® .
o= (o () () ~ T e L
where ¢, = 4(4K)'/2. The equation
3s 3s

%~ o D) ~ A

relating the change of the VBL angle 8y to its small displacements 8s at the VBL
center s = 0 has been used in the derivation of (25). Introducing the interaction (25)
into (23) one gets

78 A
or = (H) koo h=gom (26)

This stiffness term is analogous to the local anisotropy term introduced by Winter
[18] to obtain a finite value of the Doring plane wall resonance frequency.

For the uniform VBL rotation mode (3y ~dn «) (8) and (9) lead to the radial res-
onance frequency

ory = (2Jm)! (r] A2 K2 (B(k)[nk%) 2 00,(0) (7
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where k, is given by (26), n is the number of VBL pairs, E(k) the complete elliptic
integral of the second kind, and w,(0) is given by (15). Here the ratio of the integrals
{dn? u)[{dn)? = 2E(k) K(k)/n* has been used. For the optimum bubble values used

above and Afs, ~ 0.2 one gets wr &~ 20,(0)/yn at k ~ 1. Tt should be noted that
(27) gives only the bottom of the narrow excitation band whose width is proportional
to eys defined by (24).
d) For the unwinding VBL’s one has the following static ground state solution of

(20):

sin 9@ = k sn (2nK (k) Bz, k); 2nK(k)Bla = u,

cosyp® =dnu, (28)

Y = t(r/d) kenw,

where the parameter k is determined by the equation

K(k) = wr(2nA) . (29)
Here n is the number of the pairs of VBL’s of opposite signs: n = 1, 2, 3, ... [r/A4].
The bubble now is in the S = 1 state. The perturbation operator Ly, differs from (23):

Luw 8y = —3yps + (r]A)? (2% sn® (20 KB/1) — 1) 8y = euw Oy . (30)
The spectrum of (30) has been found in [19] for the case of unwinding plane Bloch
walls. Its envelopes have the form

eaw1 = — (/A2 (1 — k%), Sy, = Cpdn o u = 2nKp[x,
euwz =0, By, = Cyen, (31)
caws = (1[4 12, Sy = Cyen

The ground state euw; of iu\v is negative: the unwinding VBL’s tend to annihilate.
The nonlocal magnetostatic forces also attract the unwinding VBL’s. The exist-
ence of the negative level in the spectrum of the unwinding VBL’s will be used in
the next section.

4. Stability of Two Vertical Bloch Lines (VBL’s) of Opposite Signs
in the Moving Domain Wall

The unwinding VBL dynamics manifests itself dramatically in the effect of the ballistic
overshoot of the bubble, when the bubble continues to move and travels at a large
distance after the pulse of the driving field has been terminated. Below, however,
only the problem of the oppositely wound —z VBL pair stability in the plane wall
will be treated. First, however, let us obtain from (8) to (10) some preliminary results
which are necessary for the further discussion.

Consider the uniform rotation of the winding VBL’s (24) 8y ~ dn » under the
action of the small amplitude field 8H,(t). Assuming p = 9O (f — By()), § = — b

and keeping in mind that ey; = 0 one obtains from (8) the orthogonality condition

—B @ + Bifady”s = 0. (32)
The radial equation (9) reduces to
2 A,
8 — wdH(1) = — s> - (33)

The values of ((1{)‘,’?')“) and (1pfgm>, where wﬁ;o) is defined by (24), are 2nEr/(KAk) and
+2an, respectively. The linear velocity of the VBL distribution along the bubble
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circumference is
1hy = £md ¢ k| (2 AB(K)) . (34)

In the limit of the separated VBL’s (k — 1 and E(k) - 1) (34) coincides with the
conventional VBL velocity -+w/ 87/(2x/). For the radius perturbation one has

8 = uSH.()/(1 + (wAnk|2ra?E(k))) , (35)

where 7 is the number of VBL pairs and y = yAfec. At k — 1 one comes to the results
of [1] for the separated VBL’s. It is seen from (34) that oppositely wound VBL’s
move in opposite directions tending to annihilate, while the VBL’s of the same sign
rotate together.

The VBL’s of opposite winding migrate to the flanks of the bubble domain during
their translational motion. Under steady-state conditions the position of the VBL £,
on the bubble circumference has been found in [20]. The value of f§, can be obtained
from (8) in the following manner. For the smglo VBLy; = +r/A cosh™t (7(/9 ﬂo)//l)

and under steady-state conditions ¥ = ¥ = 0, K= cunst to the first order in (8)
takes the form

5 X @ _ daMy
F Py — X cosp=

A2
(rT By + cos 2@ 31/)),

v X of the bubble and the linear VBL velocity (34) are connected
by the relation X = —rf/sin §,. The left-hand side of the above equation must be

orthogonal to 3y ~ W) for which the right-hand side is zero. In this way one gets
after integration

tang, = =x )”6/20( . (36)

Let us consider now the 1D problem of 4+ VBL pair stability. Such a pair may be
injected from the interior of the bubble film material into the domain wall because
its topological properties do not change. The pair of VBL’s in the moving plane

domain wall is assumed to be generated by the local Walker breakdown. Equation (8)
for the plane domain wall takes the form of the parabolic nonlinear equation

where the veloci

. . H, p
Y —q— —_)—I siny = 2(yzr + 92;) — sin 2y, (37)

where the domain wall is assumed to be in 20z-plane and the easy axis is along the
z-axis. The velocity ¢ along the y-axis is measured in units of the Walker limiting
velocity 2yl I: the field H, in the wall plane perpendicular to the easy axis is in
4M unit he time is in «/2y M units, and the coordinates x, y are in units of
A = (A4)22M*)"2. Now the angle y is measured from the x-axis. Only the initial stage
of the 1D process ¢ = y(x, ) when the distortion of the wall plane is negligible will
be considered because the velocity of the VBL given by (34) is greater than the velocity
q = yAH;|a of the domain wall.

The static single VBL form siny = cosh~! () is given by the right-hand side of
(37). The velocity of the VBL in the plane wall X can be determined, if the left-hand
side of (37) is considered as a perturbation. The corresponding solution of the first-
order equation from the right-hand side of (37) is the soft Goldstone mode 8y ~
~ sin y(x — Xf). Then, the orthogonality condition (see, for example, [21]) gives the
expression

X =3 dqjdo — 11'/1 ,, (38)

corresponding to the prevmusly obtained equation (34).




[image: image10.jpg]470 H. E. KHODENEOV

The right-hand side of (37) has two stable points y = 0, . For the given finite
initial function y(x, t = 0) when (2 — £ 00) — 0 two outcomes are possible (Nagumo
problem): the initial function shrinks y(x, t - c0) — 0 or the +x VBL’s form and
move in opposite directions y(x, { - co) — . A number of mathematical criteria
have been given [22], however a simple and straightforward approach will be used
below.

The force equation for the moving z VBL interacting with —z VBL may be written
as

Fy+ Fy+ F, 4 Fy, + F, = 0. (39)
Here Fy, = 2¢Mq/y is the gyrotropic (linear density of) force acting on ¢ VBL;
Fy = —4o¢MX/yVQ is the dissipative force for w VBL; F, = —8a*M2/*|L is the

force of the attraction between +z VBL’s due to the stray flelds (L is the separation
between VBL’s); Fy, = T2xAH,M is the pressure of the external field H, at the
7 VBL; F; is the interaction force between VBL’s which will be determined below.

Let us consider an infinite periodic array of the unwinding VBL’s with separation
L:ypx=0)=®, yae=L)=n— &, p'(x=0,L) =0, when at the VBL center
9 = 7/2. The first integral of the right-hand side of (37) is

(92)* = (sin®p — sin® @)/A42. (40)

The relation between L and @ is
a—D
L= [ () dy = 24K(cos D) . (41)
I3

The force between VBL’s is given by
F, = —dE(dL, (42)

where the interaction energy Eis
= 4n/lM2 /1'-‘1/;z + sin? p) da .

Thus one gets the attractive force between the unwinding +z VBL’s
Fy, = — 4z AM2 sin? O(L) . (43)
Except the sign the expression (43) coincides with the repulsive force between two

winding VBL’s [1].
| For large L(® — 0) one gets

m By = — 3244Q7" exp (—L/4) . (44)

Now all the components in the force equation (40) are known. For the growth of
+ 7 VBL cluster it should be X > 0. Equation (40) gives the following threshold
condition:

Qi £ QUH, (2 M) > 1677 exp (—LjA) + 2Q-1RAL, 45a)

where ¢, = 2wy MA is the Walker breakdown wall velocity. Small exponential cor-
rections have been omitted in the left-hand side of (45a). The inequality (45a) shows
that the wall velocity needed to promote the growth of the generated VBL pair
(L > A) is small.

In conclusion of this section let us estimate the growth condition for the small
separation L between VBL’s when @ — 7/2. Neglecting Fy, and F in (39) one finds

iy > sin® @f(m — 20). (45D)
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The velocity ¢ needed to promote +(w — 2®) VBL’s growth in this case increases
with @ (decreases with L). At the Walker velocity ¢ = ¢,, the VBL’s of the minimal
twist w — 2, can be promoted: (45b) and (41) give the estimation: @, ~ 1.15 ~
=~ 66° when L ~ 3.34.

5. Bloch Line Intersection

In conclusion, let us consider the static 2D limiting case for (37) omitting the term H,.
The resulting equation becomes now the clliptic sine-Gordon equation. There is an
interesting exact solution of the latter equation describing the intersection of two
Bloch lines

¥

sinh [(z sin v — x cos v) sin u 4 C,
cob - = cot u —— I —E AR Y+ G

sinh [(z cos v + @ sin v) cos u + Cy]” (46)
where C1 and u, r are the arbitrary constants determining the position of the inter-
section (the core) and the tangents of the BL’s. The four BL’s stretching from the
core separate the four plane domains as shown in Fig. 2a. The solution (46) has the
topological charge ?

§ oy dif = —dar, ( (1)

where the contotir circles the core. The exptession for the exchange energy diverges
at the core o = 0 as In ¢ and must be cut off at a distance of order A.

The solution with zero topological charge can be obtained from (23) by the trans-
formation sinh — cosh.

It is very likely that these solutions are unstable under the action of the perturba-
tions splitting the core. This follows from the general theorem proved in [23] according
to which the static solutions of the elliptic sine-Gordon type equations are unstable.
A possible evolution of the system involving two Bloch points is shown in Fig. 2b.
Any two of the identical plane domains converge at the core, producing as a result
two BL.’s separating three plane domains. This process is similar to that which occurs
in the 1H buhble state [24].

In the 3D case the above solution describes the intersection of two plane domain
walls. Now the variable y, however, is the angle between the magnetization vector
and the easy axis; z and z are the coordinates in the film plane, and are measured in
units of the Bloch wall thickness 4.

Fig. 2. a) The BL intersection described by (46) with C; = C; =1, w = n/4, v = /4. The BL’s lie
along the coordinate axis and separate four plane domains. b) The core at x = z = 0 splits
ejecting two Bloch points (BP) into the BL’s
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6. Summary

The system of equations (8) to (10) describing the bubble dynamics in materials with
large Q-factor has been derived in Section 2. Being rewritten in terms of the BL model
(that is, s = (r[A) Z(+); cosh™ (r/A(B — Bo;(t))), where the sum is taken over all
VBL positions fo; and signs). Equations (8) to (10) essentially coincide with those
of [1 to 3]. Equations (8) and (9) also coincide with the corresponding equations of [5],
if the small terms ~ A/r and Q= are omitted in the latter. A detailed comparison of
the translational equation (10) with that of [5] is difficult, because the translational
equation in [5] is written in an awkward form. It should be emphasized, however,
that (10) coincides with the BL model equations of [1] and that the analysis of the
translational equation given in [5] leads to effects that are similar to the gyrotropic
deflection and the ballistic overshoot of the bubble.

In Sections 3 to 5 (8) to (10) are applied to analyze the VBL dynamics.

The linear responses of the bubble are studied in Section 3. The number of bubble
oscillation modes are pointed out; among them the radial mode in the in-plane field
(see (18)), the translational mode for the bubble in the potential well (see (18), and
the radial mode caused by the VBL rotations (see (27)) are discussed. The spectra of
the winding and unwinding VBL distributions are analyzed. The ground state of the
unwinding VBL’s is shown to be unstable. It is interesting that the upper part of the
winding VBL spectrum (24) starting with ey3 may mix up with the bulk spin waves
and thus open a new channel of dissipation for the bubble dynamics.

In Section 4 the stability of the unwinding BL pair is considered. The important
threshold criterion (45) for the growth of the VBL pair is obtained.

In Section 5 the 2D structure describing the intersection of two BL’s in the plane
domain wall is obtained as an exact solution of (8). The static solution of (8) seems to
be unstable; the possible evolution of the 2D structure is pointed out. In the 3D case
this structure is merely the intersection of two plane domain walls.
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