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On the Splitting of the Magnetic Vortexes in a Uniaxial Ferromagnet
By

H.E. KHODENKOV

Institute of Electronic Control Computers, Moscow

In this paper the magnetic S-vortex is a spin distribution in its cross-section
equivalent to the magnetic bubble domain with integer state (topological)
number S. The possibility of the composite (S >1)-vortex splitting (decay
process S—»S1 + S2 obeying conservation law S = S1 + SZ) depends crucially
on the interaction law between S1 - and S2 -vortexes.

For the spatially 2D case an exact result is known: the interaction is zero
in the purely exchange ferromagnet. The energy of the S (=ZSi)-voxtex system
is 8 AlS| (A is the exchange stiffness) irrespective of the Si-vortex positions
and radii. In the case of a uniaxial ferromagnet only singular static 2D vor-
texes with zero radii were found /1/, and recently /2, 3/, whereas the
dynamic (precessing) regular vortexes are in abundance. The evaluation of
the interaction between the latter numerically conducted in /4/ yields the law
of attraction. Below we treat the exactly solvable static 3D vortex structure
and find that the attraction between merging vortexes changes into repulsion
for the spatially separated ones.

Consider a uniaxial ferromagnet with energy

E = f(ava)? - Kamzz v, It
where A(>0) is the exchange stiffness, Ka(>0) is the anisotropy constant, and
i is the unit magnetization vector

m_ = sin@cose, m, = sin@sing, m, =cos6, (2)
where © and- ¢ are polar and azimuthal angles about the z-axis. The class of
the exact 3D solutions of the equations corresponding to (1) has been found in

/5/ for the length intervals

dl2 = (du2 + dvz) J+ dz2 5 (3)
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where J(u, v) = |dw/d(x + iy)l'2 is the Jacobian and w = u + iv is an arbitrary
analytic function obeying Cuchy-Riemann conditions which transforms x, y-co-
ordinates of the ferromagnet basic plane into u, v-coordinates.

Here we choose

w=u+‘1v=2qln((x+iy)z/a2-xlzj), (4)

the electrostatic complex potential of two 'q-charged lines in parallel with the
easy axis z separated by the distance 1 =2 ax . According to /5, the exact

solution has the form

sin® = 1/cosh(z/A- pu), ¢=pv , (5)

1/2 is the Bloch-wall width. The

continuity of @ requires the relation: 4 pqa=S(S=2, 4, 6, ...). The domain

where - co<u<oo, 0 =v <8xq and A = (A/Ka)

wall surface © = /2 defined by z = Apu is depicted in Fig. 1.
Now we rewrite the energy (1) as

N

dE/dz = A f((W)z + s'mze(v@2 + A'zsinze)dxdy E

2 2 .2 2 -2 .2
= Aj(eu+ @, sin '9)/J +(ez+ A “sin’ 6)/}.} dudv , (6)

where lower indices denote the corresponding derivatives. The first right-hand
side integral (independent of J) yields the afore mentioned exchange con-
tribution 8w AS. The second integral depends on the variable 1 = 2:“{0 intro-

duced below instead of X, and can be written in the form

© 2mq
dE(1)/dz = Ka(az/qz) fdu f dv sin26 exp(u/q)(xg + exp(u/q) +
-00 o

+2x§ cos(v/zq)exp(u/2q))-1/2 =

00

1 co
- 41(312(( S k) + S (k0 /0)- x/2) +(z/z)ﬁf<k/xo))dk, 1
4 1 i

where
f(k/ko) = 1/((k/k°) + (ko/k)

ki = exp(2z/Sa- 21n(1/2a)) , 8)

S/2 S/Z)Z

’

K(k) is the elliptic ‘integral of the first kind and where the standard integral

L4

2K(k), k<1
,_/‘dx/(l + k2 + 2k cos x)l'/2 = { :
° (@/KK(1/k), k >1
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Fig. 1. Vortex domain wall surface (DW)
z =Apu given by (5). The equipotential
curve u = 4q lnx° of (4) corresponds to the

critical z-cross-section of DW kD =1; at
k0> 1 the vortex is merged, at k0< 1itis

split

has been used. It is important to note that

the cross-section z = SAln(1/2a) of the

domain surface in Fig. 1 corresponding
k0 =1 is critical.

Initially we evaluate the right-hand integrals of (7) in the limit k0—> oo
corresponding to the merging vortexes. The leading term of the first one is
small ~ 1/k . In the next one we use the expansion K(1/k) =~ (1 + 1/4k2)qc/2
and get w sin(®/8)) + O(I/k ), whereas the logarithmic singularity
K(k-’l) after integration ~ l/k The leading term of the third integral

ko o k /(ZS sin(%/S)) + 0(1/k goes to infinity with k(—;oo accounting for the
dom@m contour energy. Fortunaﬁ.ely, multiplied by 1 (see (7)) it does not depend
on 1 being irrelevant to the vortex interaction. Thus we obtain from (7) the

interaction energy

Emt(k 0) = 2'1 /(S sin(%x/S) )K l/k 5 9)

leading to attractive force F = _dEint/dl < 0 between merging vortexes. At

fixed 1 and a it vanishes with z—+c0 because the essential points x = * X, are

far from the wall contour.

Consider now the right-hand side integrals of (7) in the opposite limit

k — 0 corresponding to the spatially separated pair of ( S/2)—vortexes The

sum of the second and third integrals can easily be evaluated as ~k Thefirst

integral can be written in the form
1 dF(k, ko)

1
SRR/ )k = @5tk /(S sin(w/S) [ KPK(k) ——2 dk | (10)
o o]

- s
where F(k, ko) =8 s‘m('n:/S)ks0 1/(2‘11:(1<L0+ ks)) goes to the delta function &(k) with
k= 0+. In this limit dF(k, k_)/dk has a sharp peak at k= (S~ 1)/(S + 1 ))‘/Sk0<

<« 1 and (10) becomes ~ kg if approximation K(k ) =9%/2 is used. The
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logarithmic singularity of K(k—*1) contributes the term ~k§ . Finally, the

interaction energy (7) between the separated (S/2)-vortexes becomes

Bk 00 = @/91s - /s« Y S B, s> an)

leading to the repulsive force F >0. In correspondence with the exchange
nature of the solution (5) at z— - co the energy (11) vanishes in this limit. It is
worth noting that the radii of (S/2)-vortexes go to zero, thus matching the
singular results of the 2D theory /1 to 3/.

From our equations (9) and (11) it follows that the separated vortexes repel,
while the merged ones are confined. Of course this result is not directly rele-
vant to the splitting of the precessing 2D vortex. It rather demonstrates the
variety of the interactions when the precessing vortex is topologically de-
formed into (5).

In conclusion, we make a comment on the exact solutions /5/ for the ferro-
magnet essentially used in this paper. Clearly, they can be implemented to
the T = 0 uniaxial antiferromagnet where magnetostatic difficulties are absent
(its energy is given by (1) after replacement ﬁ—oT where T is the antiferro-
magnetic vector). The physical identity of T and -T states allows now half-

integer values of S.

EReferences

/1/ W.F. BROWN, Jr., Micromagnetics, Intersci. Publ., New York/London
1663.

/2/ K. SOKALSKI, Acta Phys. Polon. A56, 571 (1979).

/3/ V.P. VORONOV, B.A. IVANOV, and A.M. KOSEVICH, Zh. eksper. teor.
Fiz. 84, 2235 (1983).

/4/ A.M. KOSEVICH, B.A. IVANOV, and A.S. KOVALEV, Nelineinye volny
namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova
Dumka, Kiev 1983.

/5/ H.E. KHODENKOV, Fiz. Metallov i Metallovedenie 54, 644 (1982).

(Received November26, 1984)




[image: image6.jpg]61
K2 SEY57572
] /793




