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Development of the information technologies
accounts for the interest in investigations of the soliton
dynamics in magnetic media. The simplest one-dimen-
sional (1D) object of this kind in uniaxial ferromagnets
is a kink representing a 180

 

°

 

 domain wall (DW). On the
whole, the dynamics of such DWs is rather exhaus-
tively studied (see the Walker solution of 1956 for a
DW in an external magnetic field [1] and the Schloe-
mann solution for freely moving DWs [2, 3]). The sta-
bility of solutions of the nonlinear Landau–Lifshits
equations with respect to development of a corrugation
type instability (transverse bending of the DW surface)
has been studied in less detail, although such corru-
gated DWs are rather frequently observed in experi-
ment. Examples, even restricted to the case of so-called
films with a transverse uniaxial magnetic anisotropy,
are offered (see [4]) by static distortions of the circular
cross section of magnetic bubbles, bending distortions
of a flat DW according to Schloemann, dynamic gyro-
tropic inflection of a DW surface under the action of a
moving Bloch line, etc. It should be noted that, judging
by these and other experimental data (for flat DWs, see,
e.g., [5, 6]), there is no common mechanism responsi-
ble for the DW corrugation.

This study addresses the simplest case of corruga-
tion arising on the surface of a one-dimensional 180

 

°

 

DW freely moving in a uniaxial ferromagnet. In other
words, we will consider the instability of the Walker
solution in the Schloemann form [2, 3]. Doubts con-
cerning the stability of this solution are related to a
region with a negative differential mobility of DWs (in
terms of [1]) of with a negative effective mass (in terms
of [2, 3]). According to the qualitative arguments [7],
the 1D motion of DWs in such regions can be unstable
with respect to corrugation. This problem was specially
studied on a spectral level [8, 9] and it was demon-
strated [9] that DWs actually exhibit a corrugation-type
instability in the region of negative mobility. Unfortu-

nately, the spectrum presented in [9] is restricted to the
case of a linear spatial dispersion with respect to the 2D
perturbation wave vector 

 

k

 

||

 

 localized on the DW sur-
face.

In this study, the spectrum of localized oscillations
is derived from the spectral equations of stability under
not as strong limitations on 

 

k

 

||

 

 as in [9]. This approach
will allow us determine the wavenumber 

 

k

 

||

 

M

 

 corre-
sponding to a mode with the maximum increment in the
region of instability and, hence, determining the period
of corrugation. In addition, it will be demonstrated that
there is another critical value of 

 

k

 

||

 

 = 

 

k

 

||

 

b

 

 (>

 

k

 

||

 

M

 

), above
which the DWs remain stable with respect to corru-
gation.

Consider a 180

 

°

 

 DW in the 

 

x

 

0

 

z

 

 plane, freely moving
in a uniaxial ferromagnet in the positive direction of the
0

 

y

 

 axis (the easy axis is assumed to be collinear with the
0

 

z

 

 axis). The corresponding 1D problem solution is
well known [2, 3] and can be written as

(1)

Here 

 

θ

 

0

 

(

 

y

 

) and 

 

ϕ

 

0

 

 = const are the polar and azimuthal
angles of the magnetization vector 

 

M

 

, respectively,
measured from the 0

 

z

 

 and 0

 

x

 

 axes (lying in the DW
plane); the 

 

y

 

 coordinate is measured in units of the
Bloch DW width 

 

∆

 

 = (

 

A

 

/

 

K

 

)

 

1/2

 

, where 

 

A

 

 is the exchange
hardness and 

 

K

 

 is the uniaxial anisotropy constant; the
time is measured in the units of (

 

γ

 

H

 

a

 

)

 

–1

 

, where 

 

H

 

a

 

 =
2

 

K

 

/

 

M

 

 is the uniaxial anisotropy field; 

 

Q

 

 = 

 

H

 

a

 

/4

 

π

 

M

 

 is
the so-called quality factor of the material; and 

 

ϕ

 

M

 

(

 

Q

 

)
is the value corresponding to the maximum DW veloc-
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Abstract

 

—Investigation of the spectrum of oscillations of a 180

 

°

 

 domain wall (DW) freely moving in a uniax-
ial ferromagnet shows that the one-dimensional structure becomes unstable with respect to surface distortions
in the region of negative effective mass (negative differential mobility). The upper critical value of the pertur-
bation wave vector, above which the DW corrugation is not developed, and the wave vector of a perturbation
mode with the maximum increment are determined. 
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ity. Plots of the DW velocity 

 

V

 

(

 

ϕ

 

0

 

) (in the units of 

 

V

 

w

 

 =
2

 

πγ

 

M

 

∆

 

) for three typical values of 

 

Q 

 

are presented in
the figure, where the regions of stability (see below) are
indicated by thick solid lines. The quantity 

 

ϕ

 

0

 

 has a
meaning of the momentum of a DW whose Hamilto-
nian 

 

H

 

 = 

 

∆

 

(

 

ϕ

 

0

 

)

 

–1

 

 is a periodic function of this momen-
tum [10] (in what follows, the consideration can be
restricted to the interval 0 < 

 

ϕ

 

0

 

 < 

 

π

 

/2). In the descending
branches of 

 

V

 

(

 

ϕ

 

0

 

) (see figure), the effective mass 

 

m

 

 of
the DW is negative (

 

V

 

 = 

 

∂

 

H

 

/

 

∂

 

ϕ

 

0

 

 and 1/

 

m

 

 = 

 

∂

 

V

 

/∂ϕ0 < 0).

Equations describing the case of small oscillations
can be obtained by passing to a local coordinate system
moving at the velocity V with the DW along the 0y axis.
The axes of the new system in the base plane x0y are
rotated by the angle ϕ0, so that the new 0x axis coin-
cides with the plane in which the spins are rotated by
180°. For small amplitudes of magnetization

(~exp(−iωt + i ρ)), where ρ = (x, z) are the coordi-
nates in the DW plane) occurring in the plane of spin
rotation (m||) and that perpendicular to this plane (m⊥ ),
we obtain the equations

(2)

which coincide to within the notation with the results

obtained in [9, 11]. Here,  =  = –d2/dy2 + 1 –

2/  and  = ±d/dy –  are operators and
the local coordinate y implies (y – Vt)∆(ϕ0);  =

ω∆(ϕ0)2,  = k||∆(ϕ0),  = V∆(ϕ0), and  =
Q−1(ϕ0)cos2ϕ0 (see formulas in (1)).

The main difficulty encountered in solving Eqs. (2)
is related to taking into account the terms proportional

to ~  (the static case of (2) with  = 0 is well known,
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see Winter (1961)). It would be natural to employ the

perturbation theory with respect to , expanding
Eqs. (2) in terms of the complete orthonormalized basis

set of operator . The spectrum of this operator con-
sists of two parts: (i) a translation mode χtr(y) =

1/( ), χtr(y) = χtr(y) = 0 localized on the
DW and (ii) a precession mode χpr(y, k) =

exp(iky)/ , χpr(y, k) = (1 + k2)χpr(y, k),
localized primarily in the domains. According to
Eqs. (2), the corresponding resonance frequencies are

(i) ( )2 = (  + ) (translation level) and

(ii) ( , k)2 = (1 + k2 + )(1 +  + k2 + ) >

( )2 (precession level).

The corrugation instability is determined on the
translation level and the corresponding frequency cor-

rections to ( ) have to be determined. The pertur-
bation theory employed here as analogous to the
scheme used in [11], where the calculations were

restricted to the first order in . Since this approxima-
tion corresponds, as demonstrated in [11] and con-
firmed by our calculations, to the first-order correction

( ) = 0, the refined calculation should include the
second-order terms. The contribution of the diagonal
term (ϕ0) depending on the DW velocity is taken
into account to within the corresponding order of the
perturbation theory. The results are as follows:

(3.1)

(3.2)

(3.3)

where 〈…〉  denotes the operation of determining the
matrix element (integrating with respect to y1 between

infinite limits), so that |〈χpr(y1, k)| |χpr(y1)〉|2 =
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In the lowest order with respect to , Eqs. (3.2) and
(3.3) yield (note that I(0) = 1 independently of (ϕ0))
an expression

(4)

which coincides in the vicinity of the DW velocity
maximum (where ϕ0 = ϕM) with the results of [9]. This
expression shows that, in the region where
∂V(ϕ0)/∂ϕ0 < 0 (negative effective mass), the DW
becomes unstable with respect to the surface perturba-

tions with  ≠ 0. However, in contrast to [9], the com-
plete expressions (3.2) and (3.3) allow some additional
features of the corrugation instability to be determined.

Expansion of the I( ) integral into series in 

shows that the terms on the order of  in (3.2) are
always positive. With allowance for (4), this fact indi-
cates that there exists a certain value k|| = k||M for which
the increment of the corrugation instability reaches
maximum and, hence, determines the most probable
value of the steady-state corrugation period. At the

same time, since Ωtr(  = 0)2 = 0 and Ωtr(   ∞)2 =

 (for I(   ∞)  const), we may conclude that
there is another critical value of k|| = k||b (besides k|| = 0),

at which Ωtr( )2 = 0 and above which Ωtr( )2 is
always positive (i.e., the corrugation disappears). The
figure presents three pairs of the k||M(ϕ0) and k||b(ϕ0)
curves (numerically calculated for Q = 1.2, 1, and 10)
originating from the points ϕM(Q) on the abscissa axis
(for a given Q, k||b(ϕ0) is situated above k||M(ϕ0)). As for

the applicability of the perturbation theory, it is known
that this requires the first-order correction in Eq. (3.1)
to be small. In the case of Q � 1, this correction can be
shown to be always small (~1/Q). The case of Q � 1 is
more problematic: except for separate regions, the
smallness of the first-order correction depends on the
smallness of k||.
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2

–( )=

=  k̃ ||
2∆ ϕ0( )∂V ϕ0( )/∂ϕ0,( )

k̃ ||

k̃ || k̃ ||

k̃ ||
4

k̃ || k̃ ||

k̃ ||
4

k̃ ||

k̃ ||b k̃ ||

1
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