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1. INTRODUCTION
The dynamics of domain walls (DWs) in ferromag-

netic materials under the influence of an ac magnetic
field has a number of peculiar features. One of them is
DW drift, a nonlinear phenomenon that consists in
translational DW motion resulting from averaging over
oscillations of the external magnetic field. The simplest
situation, in which the DW drift is observed and which
is the only situation considered in the present paper, is
realized for 180

 

°

 

 DWs in uniaxial ferromagnets with
easy-axis magnetic anisotropy. In particular, the DW
drift appears if a sample is subjected to a magnetic field
circularly polarized in the basal plane of the ferromag-
net. This field gives rise to an unbalanced magnetic
pressure and sets a DW in motion. In a system of
domains, the unbalanced magnetic pressure can cause
(depending on the field polarization) a somewhat dif-
ferent but closely related effect, the reorientation of
DWs in space. A review of these topics covering up to
1979 that mainly concerns the case of ferromagnets in
which the uniaxial-anisotropy energy dominates over
magnetostatic interactions can be found in [1].

Certainly, DW drift is a significantly nonlinear
effect and is at least quadratic in the amplitude of the
exciting field. Unfortunately, calculations of the DW
drift velocity as a function of the field amplitude per-
formed in the framework of the existing theories [2–5]
have been limited to the lowest nonzero (second-order)
approximation with respect to the amplitude of the
external field. The purpose of the present paper is to
develop a substantially nonlinear theory of DW drift
going beyond this approximation.

It turns out that this problem can be solved for
uniaxial easy-axis ferromagnets if the quality factor 

 

Q

 

(the ratio of the magnetic anisotropy energy to the mag-
netostatic interaction energy) satisfies the condition

(1)

where 

 

K

 

 is the uniaxial anisotropy constant, 

 

M

 

 is the
magnetization, and 

 

H

 

a

 

 is the effective anisotropy field.
In this case, the nonlinear problem of the DW drift can
be solved analytically over a wide range of applied
external fields 

 

H

 

, with the field amplitude being limited
from above by the inequality 

 

H

 

 < 

 

H

 

a

 

. The Landau–Lif-
shitz equations can be reduced to the Slonczewski
equations [1, 6], with which the problem reduces to a
set of nonlinear ordinary differential equations instead
of partial differential equations. A strong circularly
polarized magnetic field drags the spins that are local-
ized in the center of the DW and causes the spins to
rotate (a weak field causes only small deflections of the
spins). The resulting dissipative response leads to the
translational DW displacement.

The general theory of DW drift is necessary, if noth-
ing else, because many experimental studies on this
subject have been performed in relatively strong mag-
netic fields and, as a result, the observed effects go
beyond the limits of applicability of the approximation
quadratic in the field amplitude (see, e.g., [7–9]). This
argument is also fully relevant to important topics, such
as DW dynamics and electromagnetic losses in soft
magnetic materials (with 

 

Q

 

 < 1) in the case where the
applied magnetic field (or a sample) rotates [10–13]
and the DW drift also occurs.
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2. THE PROBLEM AND MAIN EQUATIONS

For a uniaxial easy-axis ferromagnet (with the easy
axis assumed to be parallel to the 

 

z

 

 axis), the initial
energy density 

 

w

 

 and the equations of motions (in the
one-dimensional case) can be written as

(2a)

(2b)

The expression for 

 

w

 

 assumes that the magnetization

 

M

 

(

 

y

 

, 

 

t

 

) depends only on the spatial coordinate 

 

y

 

 and
time 

 

t

 

. Here and henceforth, the derivatives with respect
to these variables are denoted by a prime and a super-
script dot, respectively. The dissipative term in the Lan-
dau–Lifshitz equations (2b) is presented in the Gilbert
form (

 

γ

 

 > 0 is the gyromagnetic ratio, 

 

α

 

 > 0 is the damp-
ing constant). On the right-hand side of Eq. (2a), the
first term is the nonuniform exchange energy (

 

A

 

 >0 is
the exchange stiffness), the second term is the crystal-
lographic magnetic anisotropy energy (

 

K

 

 > 0 is the
anisotropy constant, the easy axis is parallel to the 

 

z

 

axis), the third term is the magnetostatic energy in a
one-dimensional approximation, and the fourth term is
the Zeeman energy (

 

H

 

 is the external magnetic field
vector). The effective internal field is defined in the
usual way as the variational derivative, 

 

H

 

eff

 

 = –

 

δ

 

w

 

/

 

δ

 

M

 

.
In what follows, we consider a DW located in the 

 

xz

 

plane; so the normal to the DW plane is directed along
the 

 

y

 

 axis. At 

 

H

 

 = 0, the DW has a well-known Bloch
structure; so the DW magnetization has no component
along the 

 

y

 

 axis:

(3)

where 

 

θ

 

 is the polar angle of the magnetization vector
measured from the positive direction of the 

 

z 

 

axis, 

 

q

 

 is
the coordinate of the center of the DW, cos

 

θ

 

(

 

y

 

 – 

 

q

 

) = –
 – 

 

q

 

)/

 

∆

 

], 

 

d

 

θ

 

/

 

dy

 

 > 0, and 

 

∆

 

 = (

 

A

 

/

 

K

 

)

 

1/2

 

 is the DW
width parameter.

As was said above, calculations of the drift velocity
based on iterative solutions to Eqs. (2) [2–5] have been
limited to terms of the second order in an external
(weak) field. This limitation can be removed if we con-
sider ferromagnets with 

 

Q

 

 > 1. In this case, the DW
dynamics in a magnetic field can be described in terms
of the Slonczewski equations, which include only the
coordinate of the DW center 

 

q

 

(

 

t

 

) (see Eq. (3)) and the
azimuth angle of the magnetization vector 

 

ψ

 

(

 

t

 

) at 

 

θ

 

 =

 

π

 

/2, i.e., in the center of the DW. When applied to a
180

 

°

 

 DW described by Eq. (3), these equations in the
one-dimensional case reduce to the ordinary differen-
tial equations

(4a)

w
A

M
2

-------M'
2 K

M
2

-------Mz
2

– 2πMy
2 HM,–+=

Ṁ γ Heff M,[ ] α
M
----- M Ṁ,[ ] .+=

M y q–( ) Mxex Mzez+=

≡ M θ y q–( )exsin θ y q–( )ezcos+( ),

[(ytanh

ψ̇ Hz– α q̇+ 0,=

 

(4b)

In Eqs. (4), the following dimensionless variables are
introduced (indicated on the right of the arrows):

(5)

A consistent derivation of Eqs. (4) (or of their more
complete version) from the Landau–Lifshitz equations
using the method of asymptotic expansions [14, 15]
demonstrates that effects of the order of 1/

 

Q

 

 are
neglected in Eqs. (4).

For the problem in question, the most important of
these neglected effects are the deflection of the vector

 

M

 

 from the easy axis (

 

z

 

) and the excitation of uniform
precession of the spins deep in domains under the influ-
ence of the field 

 

H. Equations (4) are valid and the
above effects are small if the amplitude and frequency
of the external field satisfy the inequalities

(6)

3. APPROXIMATE EQUATIONS AND THE DRIFT 
OF THE DOMAIN WALL UNDER A STRONG 

ROTATING MAGNETIC FIELD

The problem of DW drift can easily be solved using
Eqs. (4). The rotating field H can be written as Hx =
Hcosωt, Hy = Hsinωt, and Hz = 0. Introducing the
phase angle by which the magnetization in the center of
the DW lags behind the magnetic field in the basal
plane, Φ = ψ – ωt, Eqs. (4) can be reduced to

(7a)

(7b)

In order to solve the set of approximate equations
(7), we make the following assumption, which is easier
to formulate using Eqs. (4). In the quasi-static limit, the
angle ψ can be found by equating the right-hand side of
Eq. (4b) to zero. The equation thus obtained, as well as
the energy from which this equation can be derived, has
absolutely the same structure as the equations arising in
the problem of stability of a uniaxial ferromagnet in a
magnetic field. The easy directions correspond to the
angles ψ = 0 and π in the DW plane, and the anisotropy
field Ha is replaced by 8M. On the grounds of this sim-
ilarity, we can conclude that the magnetic field unam-
biguously defines the DW magnetization (a stable value
of ψ) if the vector H in the plane (Hx, Hy) falls beyond
the astroid

(8)

where the fields Hx, y in the basal plane are measured in
units of 8M. Below, only this case of strong fields is

q̇ αψ̇– ψ ψcossin Hx ψsin Hy ψ.cos–+=

t t/ 4πγM( ), Hz 4πMHz,

Hx y, 8MHx y, , q ∆q.

Hx y, Ha, ω γHa.< <

q̇
1
α
--- Φ̇ ω+( ),–=

1 α 2
+
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considered. In this case, the right-hand side of Eq. (7b)
can be set equal to zero in a first approximation.

In this approximation, the set of equations (7) has
two kinds of solutions. In one (low-frequency) solution,
the magnetization in the center of the DW rotates syn-
chronously with the external field H and lags behind it
in phase by a constant angle Φ = Φ0. The DW velocity

, the constant phase Φ0, and the limits of the occur-
rence of this mode of DW motion are defined by the
expressions

(9)

This mode is limited from above by the maximum fre-
quency ωc at which the negative DW velocity reaches a
maximum absolute value V =  (the sign of the DW
velocity depends, in particular, on the rotation direction
of the magnetic field) and the stationary phase (which
varies in the range 0 ≤ Φ0 ≤ –π/2) is equal to Φ0 = –π/2.

Solutions of the other kind occur at frequencies ω >
ωc. Here, the phase angle between the magnetization in
the center of the DW (which follows the rotating mag-
netic field as before) and the field oscillates and the lag
of the magnetization direction behind that of the field
increases with frequency:

(10)

where ωc is given by Eq. (9) and Ω = (ω2 – )1/2. Let
us average Eqs. (10) over the oscillation period T =
2π/Ω. By directly integrating Eqs. (10), we find the
average values

(11)

Substituting  into Eq. (7a), we find the mean DW
velocity

(12)

This expression is valid in the range ω > ωc ≡ αH/(1 +
α2) [see Eq. (9)]. At the point ω = ωc, Eqs. (12) and (9)
coincide. As the frequency grows, the mean DW veloc-
ity (12) decreases steadily and tends to zero in the range
Q > ω > 1 as

  (13)

q̇

q̇ ω/α , Φ0sin– 1 α 2
+( )ω/αH , Φ̇0– 0,= = =

ω ωc, ωc≤ αH/ 1 α 2
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+( ).=
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ω2 ωc

2
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-----------------------------------------,=

ωc
2

Φsin ωc/ ω ω2 ωc
2

–( )
1/2

+( ),–=

Φ̇ ω2 ωc
2

–( )
1/2

.–=

Φ̇

q̇ ω ω2 ωc
2

––( )/α .–=

q̇
α H

2

2 1 α 2
+( )ω

---------------------------.–

In Eq. (13), the frequency is limited from above by the
inequality ω < Q, which can be seen from the second of
inequalities (6) if we express this inequality in terms of
dimensionless variables (5). On the whole, the fre-
quency dependence of the DW drift velocity is
described by Eqs. (9) and (12), as shown by the solid
lines in the figure (V is the magnitude of the velocity).
The peak observed at the boundary point between the
two different modes of DW motion ω = ωc [see Eq.(9)]
and the constancy of the sign of the DW velocity are
typical features of this dependence.

When passing over to dimensional variables in basic
formulas (9) and (12), it is necessary to take into
account that, according to Eq. (5), the DW velocity  is
measured in units of 4πγM∆ and that the frequency ω
and the amplitude H of the field rotating in the basal
plane are measured in units of 4πγM and 8M, respec-
tively.

Let us compare the DW drift caused by a strong field
H rotating in the xy plane and the DW motion in the
usual case where a dc magnetic field Hz is applied
(along the z axis). In the case of a dc field Hz, there is a
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Mean DW velocity V ≡  as a function of the frequency ω
of the magnetic field H rotating in the basal plane of the fer-
romagnet calculated for various values of the Gilbert damp-
ing constant α and quality factor Q. The solid lines are cal-
culations based on the Slonczewski equations, and symbols
are the results of numerical integration of the Landau–Lif-
shitz equations for several values of Q: (1) H = 10 and α =
0.2; (2) H = 5 and α = 0.4; (3) H = 10 and α = 0.4; and (4)
H = 5 and α = 0.2.

q̇
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mode of DW motion similar to that described by
Eq. (9), namely,  = Hz/α, where the role of the fre-
quency is played by the field Hz and the DW velocity
does not exceed the Walker velocity, which is equal to
1/2 (when measured in units of 2πγM∆; Q � 1). For the
mode of asynchronous precession of the DW magnetic
moment that is similar to the mode described by
Eq. (12), the differences are more significant. As can be
seen even from Eqs. (4), in the limit of Hz � 1, the DW
velocity does not tend to zero (as is the case in Eq. (13)
with increasing frequency) but follows a quite different
formula  = αHz/(1 + α2), which is typical for the one-
dimensional case [1, 6].

There is also a fundamental difference between the
effect under study and the DW drift in a weak field. In
the case of DW drift in a weak field, the spins are only

slightly deflected from their equilibrium direction and
oscillate near it with a small amplitude. In a strong field
H > 1, the spins in the central part of the DW are
dragged by the field and rotate following the field.

In concluding this section, let us find how the results
following from Eqs. (9) and (12) are affected by the

magnetostatic interaction , which is described by
the right-hand side of Eq. (7b) and was previously omit-
ted. The first-order correction δΦ ~ 1/H to the mode
described by Eq. (9) with Φ = Φ0 is given by the linear
equation with constant coefficients

(14)

whose steady-state solution oscillates in time as

(15)

In order to determine the effect of oscillations (15)
on Φ0, we write the solution to Eq. (7b) in the form Φ =
Φ0 + δΦ, where Φ0 and δΦ are fast and slow functions
of time, respectively. Let us expand the left-hand part of
Eq. (7b) in a power series in δΦ and keep terms ~δΦ2

(the right-hand side is small, and we can here limit our-
selves to terms ~Φ0). The fast motion obeys Eq. (14) as
before. However, the equation of slow motion now con-
tains a term ~δΦ2, because the time average of the
square of oscillations (15) is not zero. Instead of
Eq. (9), the phase angle is given by

(16)

where  = 1/(4det) � 1 and det is given by Eq. (15).
In the approximation in question, the magnitude of the
limiting angle [see Eq.(9)] keeps the same value Φ0 =
−π/2 but the limiting frequency ωc at H � 1 gets a small
correction ~1/(32H(α + α–1)). Analysis demonstrates
that, in the mode of motion described by Eqs. (10)–
(12), analogous corrections are likewise small, but this
is too cumbersome to present here.

4. NUMERICAL VERIFICATION

The main result of the present paper, the frequency
dependence of the absolute value of the DW velocity
given by Eqs. (9) and (12) (see also figure), has to be
verified numerically in two respects. It is necessary to
check whether (i) the right-hand side of Eqs. (7) can be

neglected in a low field H and whether (ii) approximate
equations (7) can be used instead of the Landau–Lif-
shitz equations (2b) for low values of the quality factor
Q.

In the first case, the complete equation (7b) was
numerically integrated (the details of this integration
are not presented here). The calculations demonstrate
that, for the values of H and α given in the figure, the
difference between the exact and approximate solutions
is small. Moreover, since the amplitude of oscillations
δΦ in Eq. (15) is small, the typical peak in the V(ω)
dependence is preserved up to H ~ 1. Near this peak, we
have Φ0 ≈ –π/2, ω ≈ ωc ≈ αH (α < 1), and δΦ ≈
α/(4ωc) ≈ 1/(4H) [see Eqs. (9), (14)]. The numerical
calculations show that this peak is still quite distinct
even at H = 2 (here, δΦ ~ 0.1) and that its shift in fre-
quency is very small, in agreement with Eq. (16).

The second case requires numeric integration of the
Landau–Lifshitz equations (2). Numeric calculations
were performed for several values of the quality factor
Q > 1, which does not enter into the Slonczewski equa-
tions (7). The results of integrating Eqs. (2) for three
typical values of Q make it possible to draw certain
conclusions about the accuracy of the approximate the-
ory based on Eqs. (7) and are shown in the figure.

Overall, despite some scatter, the values calculated
from Eqs. (2) are quite close to Eqs. (9) and (12)
(shown by solid lines in the figure) derived in the
approximate Slonczewski theory. The discordance (in
agreement with the general theory [14, 15]) increases
with decreasing Q. The results of calculations for H =

q̇

q̇

2πMy
2
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+
α

---------------δΦ̇ H Φ0δΦcos+
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2
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10 and Q = 10 are not shown in the figure, because they
can hardly be compared to the approximate theory.
Indeed, Eqs. (7) are valid for H/Ha � 1. In dimension-
less units (5), this condition has the form 2H/(πQ) � 1.
For H = 10 and Q = 10, the left-hand side of this ine-
quality is 2/π ≈ 0.7, which is certainly not sufficiently
small as compared to unity.

5. DISCUSSION

It has been demonstrated in this paper that a suffi-
ciently strong magnetic field rotating in the basal plane
of a uniaxial ferromagnet drags (with some lagging in
phase) the magnetic moments located near the center of
the domain wall. Qualitatively, the mechanism of trans-
lational DW motion can be described using the funda-
mental equations (2b) rewritten in angular variables
(the polar angle θ of the magnetization vector M is
measured from the z axis and the azimuth angle ψ, from
the x axis in the xy plane):

(17)

It is clear that, near θ ≈ 0 (which corresponds to the
DW center) it follows from the first of Eqs. (17) that

 –  = 0, because δw/δθ ≈ 0. (In the case where
a field Hz is applied, the zero in the right-hand side of
the above equations should be replaced by γHz.) In the
regime of translational motion of the DW described by
Eq. (3), which is due to the spin-drag effect described
by the second of Eqs. (17), we have  ≈ ω. Therefore,

 = – , which coincides with Eq. (9)
obtained previously from the Slonczewski equations.
So, in the case under consideration, the translational
DW motion is due to the balance of the kinetic moment
and the dissipative action of the magnetic moments in
the center of the DW in the rotating field H.

For the sake of completeness and comparison with
the results of the present work, we give here the DW
drift velocities in a weak circularly polarized field H
calculated within the most consistent, in our opinion,
approach [5]. The results are expressed in dimension-
less variables (5) and expanded where necessary in
power series in 1/Q. Below the frequency of uniform
FMR (ω < γHa), for a weak field (H < 8M), it follows
from [5, Eq. (40)] that, in dimensionless units, V =
ωH2/(2αQ) for ω < Q. For ω > γHa, it follows from [5,
Eq. (39)] that V = 2H2/(αω) for ω > Q. In both cases,
the DW drift is due to the magnetic pressure exerted on
the DW that appears because of the Larmor precession
of the spins inside domains [1, 2] (this precession is not
described by the Slonczewski equations [14, 15]). This
effect is small (~1/Q) everywhere except in the region
near the uniform FMR ω ~ γHa [2].

ψ̇ θsin αθ̇–
γ
M
-----δw/δθ,=

θ̇ θsin αψ̇ θsin
2

+
γ–

M
------δw/δψ.=

ψ̇ θsin αθ̇

ψ̇
q̇ θ'( )ω∆/αsgn

Let us dwell now on the applicability of the results
obtained here to DWs in films with Q > 1 that are mag-
netized normal to their surface. Among rare-earth fer-
rite-garnets films, which are popular objects of experi-
mental studies, the Bi-based compounds seem to be the
most suitable. For them, the values of Q can be higher
than 50, which makes it possible to realize the strong-
field regime characterized by inequalities (6).

A particular feature of normally magnetized films is
that the DWs in them are not one-dimensional but
rather are distorted along the z axis (i.e., through the
film thickness h) by the magnetostatic field Hy(y = q, z) =

 directed perpendicular to the DW sur-
face. This field is created by magnetic poles located on
both surfaces of the film. The resulting DW is called
twisted, and its properties can be described by the fol-
lowing version of the Slonczewski equations, which is
more complete than Eqs. (4):

(18a)

(18b)

with the boundary conditions on both surfaces of the
film q'(z = ±1) = ψ'(z = ±1) = 0. In these equations, we
use the same notation as in Eqs. (4) but take into
account the dependence on z (z is measured in units of
h/2; the derivatives with respect to the dimensionless
coordinate z are marked by primes; ε = 2Λ/h; Λ = ∆Q1/2

and ∆ are the width parameters of the Bloch line and
DW, respectively).

The applicability of the results obtained in this work
to DWs in normally magnetized films depends on how
much the DWs are twisted [i.e., how large their devia-
tion from the simple Bloch structure described by
Eq. (3) is]. In this connection, it should be noted that, as
follows from Eqs. (18), the nonuniform exchange inter-
action, which is proportional to ε2ψ'', substantially sup-
presses the effect of the field Hy(z) and impedes nonuni-
form rotation of the spins along the z axis if the film
thickness is small, i.e. for ε > 1. This fact was first found
quite long ago using numerical integration of Eqs. (18)
(A. Hubert, 1975; see a detailed rendition of his work
in [1]), and numerical results have shown that the twist
is suppressed even at values of ε as small as ≈0.8.

An appropriate perturbation theory, in which the
small parameter is 1/ε2 and the boundary conditions are
of importance, was developed in [16, 17]. If we inte-
grate Eqs. (18) over the film thickness (≥ z ≥), then, tak-
ing into account the boundary conditions and antisym-
metry of the field Hy(z), we immediately get the one-
dimensional equations (4). The next terms in the expan-
sion in a power series in 1/ε2 (both dependent and inde-
pendent of z) can be obtained using the perturbation
theory developed in [16, 17]. In this theory, the one-
dimensional dynamic equations play the role of the

2z/h( )arctanh

ψ̇ Hz– α q̇+ ε2
q'',=

q̇ αψ̇– ε2ψ''– ψsin Hy z( )–[ ] ψcos+=

+ Hx ψsin Hy ψcos–
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solvability conditions for two-dimensional problems
that take into account a weak twist.

Concerning the case of thick films, we note that the
strong-field criterion (6), which is a necessary (but not
sufficient) condition for realization of the DW drift
mechanism considered here, is significantly altered.
The suppression of the DW twist and transition to the
simple Bloch (or Néel) structure in thick films (i.e., for
ε < 1) depend on the field direction and, for certain field
orientations, occur when the field magnitude signifi-
cantly exceeds 8M, as follows from theoretical consid-
erations [18, 19] and experiment [20].
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