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In magnetics, Bloch lines (BLs) divide the domain
wall (DW) surface into subdomains and significantly
influence the DW properties. Numerous attempts have
been made to construct ferromagnetic memory devices
based on Bloch lines [1, 2].

BLs in ferromagnets with a high uniaxial anisotropy
seem to have been studied most fully to date [3]. In
weakly anisotropic films, the respective study was pio-
neered much earlier [4] (for the state of the art in this
field, see [5]). In cubic ferromagnets, BLs are observed
irrespective of whether the anisotropy constant is nega-
tive [6, Fig. 1] or positive [7]. Theoretical models of
BLs in weak ferromagnets are suggested in [8, 9]. Chet-
kin et al. [10] observed local sags in BLs moving with
a high velocity in yttrium orthoferrite and related them
to the vorticity displacement along the DW.

While the presence of DWs in antiferromagnets has
known for long, the DW structure in antiferromagnets
appears to be poorly understood. Disclinations and vor-
ticity in antiferromagnets are analyzed in [11]. In [12],
a number of multidimensional vortical solutions to the
Andreev–Marchenko equations [13] for a uniaxial anti-
ferromagnet were found. Unfortunately, among the
solutions found in [12], the simplest element of the DW
substructure, the localized BL similar to 180@o BLs
observed in uniaxial ferromagnets [3], is lacking.
Below, the author, based on the Andreev–Marchenko
equations [13] (see also [11]), derives reduced equa-
tions similar the Slonczewski equations [3] for ferro-
magnets.
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The only strained point in this work is that
Lagrangian 

 

L

 

0

 

, which specifies 180

 

°

 

 DWs of the anti-
ferromagnet, is used as the initial one, since it is invari-
ant in the 

 

x

 

0

 

y

 

 basal plane of the antiferromagnet.
Parametrizing the antiferromagnetic vector in the form
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mined by perturbation 
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. As follows from (1.2), such
a statement of the problem is correct if 
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In such a statement, our problem is similar to the
problem of derivation of the Slonczewski equations for

 

q
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) and 

 

ψ
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) in highly anisotropic ferromag-
nets (here, the condition 
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/
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 1 replaces the condi-
tion 

 

Q
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 1, where 

 

Q

 

 is the figure of merit). These equa-
tions were asymptotically derived from the Landau–
Lifshitz equations by expanding in powers of 1/

 

Q

 

 in

L1/ 4M0
2β1( ) l̇

2
/2 l l̇ H×[ ]⋅–=

–
1
2
--- l H×( )2 ∇ x z, l( )2 β0

β1
-----ly

2+ + .

l̇

θ0cos  = y q x z t, ,( )–( )/∆[ ]tanh , ϕ0–  = ψ x z t, ,( ).
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[14, 15]. It is convenient to apply the Lagrangian state-
ment as in [15], where it was shown that the desired
equations can also be obtained by substituting the start-
ing equations into the Lagrangian ((2) into (1.2) in our
case), integrating the result over y in infinite limits, and
only then varying in q and ψ. Taking into account the

contribution from dissipative function R = αGM0 /2γ
(where αG is the Gilbert damping constant) in a similar
way, we arrive at the effective equations

(3.1)

Let a BL separate two subdomains with ψ(x 

) = 0, π on the 0x axis. This is possible if  <  ≡

β0/β1 (at  > , ψ(±∞) = ±π/2), where Hs is the
switching field of the structure, which is (β0/β1)1/2 times
lower than H0 = 2M0(aβ1)1/2. Then, considering the case
Hy = 0, we find from (3.2) that

(4)

If the BL moves freely with constant velocity V,
solution (4) retains the form but now we have

(5)

As follows from (5), at  � β0/β1 < 1, the limit
value of velocity V0 is close to unity (in dimensional
units, V0 ≡ ω0∆). The motion of the BL is accompanied
by the occurrence of a step on the DW. The height of
this step depends on the velocity,

(6)

where q0 is a constant. Note also that, in the limit Hx, y =
0, system (3) splits into two independent equations: a
linear equation for q(x, t) and a sin-Gordon equation

with external pumping ~ (t) for ψ(x, t).

To conclude, consider linear oscillations of the BL
in the presence of weak permanent field Hy. For small
amplitudes δq and δψ, we have from (3)
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(7.3)

Along with eigenfrequency ω, system (7) includes
quasi-elastic frequencies ωq and ωψ of the DW and BL.
As follows from (7), the DW oscillation spectrum con-

tains two branches of bending oscillations, 2 =  + k2

and ω2 =  + β0/β1 + k2, localized outside the BL.

The theory of BL free oscillations in ferromagnets is
based on the fact that, at ω < ωq < 1, highly delocalized
sags arise on a DW near a BL. According to (7.1), the
same is true for DWs in antiferromagnets when the DW

sag, λ = (  – ω2)–1/2, exceeds width λ of the BL,

(8)

It should also be noted that the lower eigenfunction

of operator , δχ = sinψ0, is, in this case, a shear mode

of the BL along the DW; therefore, δχ = 0. Substitut-
ing (8) into (7.2) and taking advantage of the fact that,
according to (4), δψ = –δXsinψ0/Λ for the shear mode,
we leave only terms containing δχ in expansion (7.2) in
eigenfunctions. Eventually, we arrive at the dispersion
relation

(9)

The only solution to (9) lies in the domain ω ≤
min(ωq, ωψ) and differs little from ωq or ωψ at  � 1.
Assuming that the quasi-elastic frequencies are com-
pletely defined by magnetoelastic energy wme ~ b2/c
(where a and b are the estimated shear modulus and
magnetoelastic constant), we find hat ωq ~ ωψ ~

w0(wme/β1 )1/2. For typical orders of the parameters
involved (M0 ~ 102 G, β1 ~ 10, a ~ 103, γ ~ 107 (s Oe)–1, c ~
1012, and b ~ 107 erg/cm3), we have ω0 ~ 1011 s–1 and
ωq ~ ωψ ≤ ω0/10.

If Hy = 0, field Hz(t) entering into (7.2) does not
cause sags on the DW but sets the BL in motion. The
BL velocity can be found by expanding (7.2) in eigen-

function δχ as above,  = –πΛ /(4αGaM0). For the
above orders of the parameters, ∆ ~ 10–5 cm, and β0 ~

1, it is necessary that  be on the order of 106 Oe/s to

have  = 1 cm/s even if αG ~ 10–4.
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Ḣz

Ẋ
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