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1. INTRODUCTION

By the drift of a domain wall (DW) in ferromagnetic
samples, the phenomenon of its average translational
motion under the effect of oscillating magnetic fields is
usually meant. The drift of DWs and the closely related
effect of reorientation of the system of DWs is treated
in numerous works (predominantly, concerning uniax-
ial ferromagnets); a review of data published up to 1979
can be found in [1]. To excite drift, two orthogonal
magnetic fields oscillating with the same frequency are
usually applied to the ferromagnet (single-frequency
excitation). The theoretical description of this effect
(see [2–4] for the case of uniaxial ferromagnets) is, as a
rule, restricted to a quadratic approximation in small
amplitudes of the exciting fields.

The transition into practically interesting range of
strong fields was realized in [5], which proved to be
possible at the expense of a narrowing of the class of
magnets to be considered. For uniaxial ferromagnets,
which are characterized by a large quality factor
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 is the effective anisotropy field and 
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 is the
saturation magnetization, instead of the Landau–Lif-
shitz equations, much simpler Slonczewski equations
[1] can be used for the 180

 

°

 

 DW (and only for this DW).
In this case, the effects that are proportional to 
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 are
omitted; their consideration should be restricted to the
range of weak magnetic fields 
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 and low frequen-
cies 

 

ω
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, where 

 

ω

 

0

 

 is the frequency of natural ferro-
magnetic resonance (see, e.g., [6]). In our previous
work [5], we found, in terms of the Slonczewski equa-
tions, a nonlinear solution to the problem of single-fre-

Q Ha/4πM � 1,≡

 

quency drift of a DW, where the strong exciting field is
oriented and rotates in the basal plane of the magnet.

It seemed natural to apply the approach used in [5]
to another frequently used configuration, where one of
the external fields is, as before, polarized in the basal
plane and the second field oscillates along the EA of the
ferromagnet. However, as follows from Slonczewski
equations, in the single-frequency approach the effect
of drift in such a configuration is absent (see Sections 2
and 3). For true, a more rigorous consideration using
Landau–Lifshitz equations (see, e.g., [4]) shows that in
this case even in the quadratic approach there exists
some drift which is not “felt” by the Slonczewski equa-
tions since it is proportional to 

 

~1/

 

Q

 

.
Nevertheless, in the above configuration, as is

shown in this work, in strong magnetic fields there does
exist a significant drift of a DW which does not vanish
even in the limit of 

 

Q

 

  

 

∞

 

. To reveal it, it is sufficient
to change the conditions of excitation and pass from the
single-frequency to two-frequency excitation, where
two orthogonal polarizations of the magnetic field
oscillate with different frequencies linked by a certain
relationship.

2. PERTURBATION THEORY AND ANALYTICAL 
RESULTS

Let us consider a uniaxial ferromagnet satisfying
condition (1) whose EA is collinear to the 

 

0

 

z

 

 axis and
whose basal plane coincides with the 

 

x

 

0

 

y

 

 plane. Let the
plane of the 180

 

°

 

 DW is the 

 

xOz

 

 plane, the magnetiza-
tion distribution 
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 (where 
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 is the position
of the DW center) depends on the coordinate 
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 and time

 

t

 

, and the boundary conditions are written as 
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)  

 

. The Slonczewski equations are aMez+−
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reduced form of the Landau–Lifshitz equations; they
relate the position of the DW center 

 

q

 

(

 

t

 

)

 

 and the azi-
muthal angle 

 

ψ

 

(

 

t

 

)

 

 (which is measured from the 

 

0

 

x

 

 axis)
of the vector 

 

M

 

(

 

y

 

 – 

 

q

 

(
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)

 

t

 

)

 

 at the center of the DW 

 

y

 

 =

 

q

 

(

 

t

 

)

 

. With allowance for the Zeeman term 

 

–

 

HM

 

 (

 

H

 

 is
the magnetic-field vector) and magnetostatic term

 

2

 

π

 

, they take on a simple form

 

(2.1)

(2.2)

 

Equations (2) contain dimensionless variables (to the
right of the arrows)

 

(3)

 

where 

 

γ

 

 > 0 is the magnetomechanical ratio and 

 

α

 

 > 0
is the Gilbert damping factor. The fields that excite the
DW drift may be written as
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where 
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 and 
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 are the frequencies,
amplitudes, and phases of the fields. The 

 

H
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 field is
not considered below, since its treatment is analogous to
that of 

 

H

 

y

 

(

 

t

 

)

 

 and leads to similar results. Equations (2)
reduce to a single equation of the first order

 

(5.1)

 

in which

 

(5.2)

 

By determining 

 

ψ
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)

 

 from Eq. (5.1), we find  from the
linear equation (2.1).

The main problem is to calculate the parameter 

 

Ω

 

 of
the solution of the type 

 

ψ

 

(

 

τ

 

) = 

 

Ωτ

 

 + 

 

η
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 of the nonau-
tonomous nonlinear equation (5). Proceeding from the
representation of the magnetization in the form 

 

M
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 =

 

q

 

(

 

t

 

), 

 

t

 

) = 

 

M

 

(cosψ(τ)ex sinψ(τ)ey, 0) at the center of the
DW, we can interpret Ω as the frequency of the rotating
motion of M(y = q(t), t), and η(τ), as oscillations (libra-
tion), which are superimposed onto this motion, with a
zero average in time 〈η(τ)〉τ. The drift velocity is deter-
mined by averaging over the time in Eq. (2.1) (〈 (t)〉t ≡
ω2〈 (τ)〉τ; for the relation between t and τ, see
Eq. (5.2)):

(6)

Note at once that the sought-for drift solution exists
only in the presence of both fields, Hz(t) and Hy(t), in
(5.1) and of a certain link between ω1 and ω2. (In the
case of the same polarization fields, the most interest-

My
2

ψ̇ aq̇+ Hz t( ),=

q̇ αψ̇– ψsin Hy t( )–( ) ψcos Hx t( ) ψ.sin+=

t t/ 4πγM( ), q ∆q,

Hz 4πMHz, Hx y, 8MHx y, ,

Hz t( ) H0z ω1t ω0z+( ),cos=

Hy t( ) H0y ω2t ω0y+( ),cos=

ψ̇ τ( ) 1

ω2 1 α2+( )
-------------------------- H0z ω1τ/ω2 Φ+( )cos[=

+ α H0y τ ψcossin ψ ψcossin–( ) ],

τ ω2t ϕ0y, Φ+ ϕ0z ω1ϕ0y/ω2.–= =

q̇

ψ̇
ψ̇

q̇ t( )〈 〉 t ψ̇ t( )〈 〉 t/α– Ω/α.–= =

ing phenomena at the unequal excitation frequencies
appear to occur upon the superimposition of the dc and
ac components of the field Hz (see [3, 7]).

When constructing a perturbation theory for Eq. (5),
we assume that the contribution from the field Hz pre-
vails over the contributions from Hy and from magneto-
static energy. In this case, in the zero approximation we
obtain a purely vibrational (librational) solution (5.1)

(7)

Representing the sought-for solution in the form
ψ(τ) = Ωτ + ν(τ), we transform (2.1) into an equation in
which the right-hand side is proportional to some small
parameter and admits averaging over the “fast” motion:

(8)

The solution to (8) is sought for in the form of the so-
called straightforward expansion [8], which reduces to

(9)

and does not require the introduction of auxiliary
parameters into the equations and into their expansions.
However, Eq. (9) permits us to determine only the first
vanishing approximation for Ω , which arises upon the
appearance of a constant, nonoscillating term in the
expansion of the right-hand side of Eq. (8) and which
yields the sought-for contribution proportional to ~Ωt.
Naturally, in the following order the expansion (9)
becomes invalid, since it contains terms which diverge
at t  ∞ stronger than ~t. For our further consider-
ations, only two first approximations are sufficient:

(10.1)

(10.2)

in which ψ(0)(τ) is determined by Eq. (7). This system
can easily be integrated, since its right-hand sides are
successively determined by preceding equations. By
using the well-known expansions into Fourier series

(11.1)

ψ 0( ) τ( ) b ω1τ/ω2 Φ+( ),sin=

b H0z/ω1 1 α2+( ).=

ν̇ τ( ) α
ω2 1 α2+( )
-------------------------- H0y( τ ψ 0( ) τ( ) ν τ( )+[ ] -cossin=

–
1
2
--- 2 ψ 0( ) τ( ) ν τ( )+[ ]sin .

ν τ( ) ν 1( ) τ( ) ν 2( ) τ( ) …,+ +=

ν̇ 1( ) τ( ) α
ω2 1 α2+( )
--------------------------=

× H0y τ ψ 0( ) τ( )cossin( 1
2
--- 2ψ 0( ) τ( )sin– ;

ν̇ 2( ) τ( ) α–

ω2 1 α2+( )
--------------------------=

× H0y τ ψ 0( ) τ( )sinsin( 1
2
--- 2ψ 0( ) τ( )cos+ ν 1( ) τ( ),

z ϑsin( )cos J0 z( ) 2 J2k z( ) 2kϑ,cos
k 1=
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∑+=
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(11.2)

which contain Bessel functions, we first find a solution
to (10.1) as

(12)

where b is determined by Eq. (7), and Φ, by Eq. (5.2).
One feature (and restriction) of the straightforward

expansions is the appearance in them (in this or that
approximation) of terms which diverge at t  ∞
(which have already been mentioned above) and also of
resonance denominators. In the case of Eq. (12), the
divergences arise when ω2 = 2kω1, k = 1, 2, …, but, except
for the frequencies indicated, the purely oscillating solu-
tion (12) remains valid. However, already the equation
of the next, second order (Eq. (10.2)) after substitution
of (12) into its right-hand side leads to a nonzero veloc-
ity of rotation Ω. It can easily be found that this occurs
if we impose the following restriction on the frequen-
cies of the fields Hz(ω1t) and Hy(ω2t):

(13)

it is precisely this restriction that serve as the condition
for the two-frequency excitation of the DW drift. Note
also that no single-frequency drift (ω1 = ω2) arises in
this case. Using the Fourier series (11) and trigonomet-
ric formulas (represent of the product of harmonic
functions through the sum of individual harmonic
terms), we find that the only contribution to the right-
hand side which forms Ω ≠ 0 can come only from terms
that are quadratic in H0y. The contributions that are lin-
ear in H0y, as well as the contribution of the magneto-
static energy (proportional to ~J2k + 1/(b) in (12)) in the
second-order perturbation theory, are purely harmonic,

so that the effect of drift is proportional to ~ .

Now, we write down the right-hand side of
Eq. (10.2) that is responsible for the condition Ω ≠ 0:

z ϑsin( )sin 2 J2k 1+ z( ) 2k 1+( ) )ϑ,cos
k 1=

∞

∑=

ν 1( ) τ( ) α
ω2 1 α2+( )
-------------------------- H0y J0 b( ) τ -cos–

⎩
⎨
⎧

=

+ J2k b( )
1 2kω1/ω2–( )τ 2kΦ–[ ]cos

1 2kω1/ω2–
--------------------------------------------------------------------⎝

⎛
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∞

∑

+
1 2kω1/ω2+( )τ 2kΦ+[ ]cos

1 2kω1/ω2+
---------------------------------------------------------------------⎠

⎞

+
1
2
--- J2k 1+ 2b( )

1 2k+( ) ω1τ/ω2 Φ+( )[ ]cos
2k 1+( )ω1/ω2

-------------------------------------------------------------------
⎭
⎬
⎫

,
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∞

∑

ω1 2ω2;=

H0y
2

αH0y

ω2 1 α2+( )
--------------------------⎝ ⎠

⎛ ⎞ 2

J0 b( )J1 b( ) 2τ 2τ Φ+( )sinsin{

(14)

After averaging over time τ, the first term in braces
in Eq. (14) is proportional to ~ J0(b)J1(b)cosΦ. Under
the sign of sum with respect to m and k in (14), we
should separate terms that do not vanish upon averag-
ing in time. The criterion for this choice is the propor-
tionality of some terms in the brackets to a common
factor sinτ standing before the sign of sum. The neces-
sary contributions come only from the second term at
k = m + 1 and the last term at k = m (k = 1, 2, …). The
double sum now can be convoluted with respect to one
of the indices to obtain, instead of (14), the following
expression:

(15)

After averaging over the initial time t (for the rela-
tion between the averaging over t and τ, see (6)) and
regrouping of terms under the sign of sum, we obtain
the sought-for frequency of rotation as

(16)

Summation of the infinite series of products of
Bessel functions, which leads to a nonnegative sum,
was realized using formula 5.7.13.2 from the handbook
[9]. We remind that upon the passage to dimensional
units, the frequency, velocity, and field H0y are measured
in units of 4πγM, 4πγM∆, and 8M; b = γH0z/[ω1(1 + α2)],
and Φ = ϕ0z – 2ϕ0y.

The velocity of the DW drift is expressed through Ω
via formula (6), which in dimensional units takes on the
form 〈 (t)〉t = –∆Ω/α, where ∆ is the parameter of the
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width of the 180° DW. A comparison of this formula
with the DW velocity  = ∆γHz/α in a dc field Hz < HW =
2πMα (HW is the Walker velocity), which is collinear
with the EA, establishes the equivalence of Ω and γHz.
For a DW could be shifted, the external field Hz should
exceed the coercive force Hc (in iron garnet films, this
is a magnitude of ≥0.1 Oe), which implies the fulfill-
ment of the condition Ω > γHc, where γ is the magneto-
mechanical ratio. This condition also refers, to the full
measure, to the results of [5].

3. NUMERICAL RESULTS AND DISCUSSION

In the dynamics of DWs, which is described by a non-
autonomous nonlinear equation of relaxation type (5), an
important role belongs to the sign of its right-hand side.
If we denote it by f(τ, ψ), then the regions of a mono-
tonic increase (decrease) of ψ with increasing τ are
determined by the conditions f > 0 (f < 0), respectively.
The f(τ, ψ) function is periodic in ψ and if the ratio
ω1/ω2 is rational, it is also periodic in τ. At the contour
f(τ0, ψ0) = 0 the oscillating solution (5) reaches an
extremum; the solution δψ(δτ) in a small vicinity of
any point of the contour, as follows from the equation

(17)

has the form δψ ~ ±δτ2. The main problem is to find
under what conditions imposed on f(τ, ψ) the oscillat-

q̇

d δψ( )
d δτ( )
--------------- f ψ τ0( ) ψ̇ τ0( )δτ+ τ0 δτ+,[ ] ∂f

∂τ0
--------δτ,≈=

ing solution (5.1) contains, along with an oscillating
part, a linearly increasing term proportional to ~Ωt.

In this work, we obtained an analytical formula for
Ω (see Eq. (16)) which refers to the case where the fre-
quencies of the orthogonal fields are linked by the con-
dition of the two-frequency excitation of the DW drift
(Eq. (13)) and one of them, Hz(t), is large and is
assumed to be dominating. The limitation of this
approach (the straightforward expansion of (Eq. (9)),
which does not permit us, while calculating Ω, to go
farther than the second-order approximation, requires
the verification of Eq. (16) by numerically solving the
main equations (2).

The central part of Fig. 1 displays the solution ψ(t)
to Eq. (2) (solid curve) in an arbitrarily chosen time
interval for the values of the parameters indicated
nearby. The figure also contains a straight line Ωt
whose slope Ω = 0.26… was determined from the total
slope of the curve ψ(t) and agrees with the theoretical
value calculated from (16) to an accuracy of two deci-
mal places. The fine structure of a fragment of the ψ(t)
curve is shown in the lower inset in the right-hand bot-
tom corner against the background of periodic contours
of f(τ0, ψ0) = 0 (small vertical ellipses at which f = –4.3
outline the regions where ψ(t) decreases, the vertical
arrow in the inset corresponds to the middle arrow in
the main part of the figure, the introduction of even a
small discrepancy into the condition of the synchroni-
zation of frequencies (13) transforms the frequency of
rotation of Ω to zero (see the upper inset in the left-hand
upper corner of the figure). The irrational value ω2 = 2–

660 680 700 720 740
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696 700698 702 704 706

I I I
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Fig. 1. Two types of solutions to Eqs. (2) (see the main text).
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21/2/10, which is close to 2, was chosen in order to
exclude the frequency-related synchronism possible at
rational values of the ω1/ω2 ratio.

Returning back to the main curve, we note the exist-
ence of beatings with large periods TΩ ~ 37, which are
marked by arrows; they cannot be described satisfacto-
rily in the framework of the above approximations.
Another circumstance referring to Fig. 1 is also
related to the applicability of the perturbation theory.
If we take that the formal parameter of smallness is
ε = αH0y[ω2(1 + α2)] (see Eq. (5.1)), then at the values
of parameters indicated in Fig. 1 we have ε = 1. But
since we consider the second-order effect, we should,
as follows from Eqs. (10.2) and (12), additionally mul-
tiply ε2 by J0(b)J1(b). The maximum value of this mul-
tiplier is ~0.35, i.e., <1 (b ~ 1, so that we can speak of a
qualitative applicability of (16) also at small values of
b = γH0z/[ω1(1 + α2)].

It is of interest to numerically estimate the possible
contribution to Ω from processes that exceed the sec-
ond order in which the theoretical formula (16) was
obtained. Some of these processes should have a differ-
ent phase dependence than that predicted by Eq. (16),
i.e., ~cosΦ. The character of the arising deviations can
be obtained from Fig. 2 (the values of the parameters
are given in the figure; they coincide with those given
in Fig. 1). The solid line corresponds to the theoretical
curve of cosΦ. Points were calculated by Eq. (2); they
correspond to the values of the frequency of rotation
Ωcalc(Φ)/Ω(0) depending on the phase Φ = ϕ0z – 2ϕ0y

(for clearness, Ωcalc(Φ) is normalized by Ω(0), the the-
oretical value of (16) at Φ = 0. Although on the whole
there is a satisfactory agreement between the calculated
results and formula (16), in regions where cosΦ  0,
there is observed a characteristic discrepancy. In addi-
tion, the calculated picture is somewhat shifted to the
right relative to the theoretical one.

Of large importance is the dependence of the fre-
quency of rotation Ω on the amplitude of the external
field H0z oriented along the EA. The characteristic
decaying oscillating dependence is displayed in Fig. 3
for the parameters taken from the set used in the pre-
ceding figures. Note the general agreement of numeri-
cal results with (16), except for those regions where the
frequency Ω and the drift velocity linearly related to it
are close to zero. The maximum value of the drift veloc-
ity, i.e., |〈 (t)〉| = ∆Ω/α for the data indicated in Fig. 3
is rather large: max(Ω/4πγM) ~ 1/2 and |〈 (t)〉| ≈ 2 ,

where  = 2πγM∆ is the Walker velocity in materials
with Q > 1 (usually, 1–10 m/s). From the experimental
viewpoint, only moderate values of H0z/4πM are of
importance at present.

According to (16), the frequency of rotation Ω (and
related drift velocity) depend quadratically on the ac
magnetic field Hy(t) applied perpendicularly to the DW
plane. To verify the quadratic law (and go beyond the
limits of values of the damping α and the frequencies
ω1, 2 used in Figs. 1–3, Fig. 4 shows (discrete symbols)
the results of calculations of Ω(H0y) based on the
numerical solution of Eq. (2) for two values of the field
amplitude Hy(t) differing twofold.

The theoretical curve (17) for the field amplitude
H0y = 5 is plotted as a solid line. The data for H0y = 5
calculated via Eq. (2) are plotted as square symbols; the
data for H0y = 2.5 (asterisks) are multiplied by a factor
of 4 to provide their normalization with the above-men-
tioned theoretical curve Ω(H0y). A comparison of these
data between themselves and with the theoretical curve
shows that, with decreasing frequency and Gilbert
damping factor α, we can speak of only a general qual-
itative agreement with the theory, which is especially
well seen for the smaller value of H0y (H0y = 2.5). One
of the possible explanations is that Eq. (16) obtained in

q̇
q̇ q̇W

q̇W
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–3 –2 –1 0 1 2 3
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ω2/4πMγ = 2

Φ

cosΦ, Ωcalc(Φ)/Ω(0)

Fig. 2. Phase dependence of the frequency of rotation Ω(Φ):
solid curve, plotted using Eq. (17); points, numerical calcu-
lation via Eq. (2).
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ω1/4πMγ = 4
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0

Fig. 3. Field dependence of the frequency of rotation
Ω(H0z): solid curve, plotted using Eq. (17); points, numeri-
cal calculation via Eq. (2).
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the second order perturbation (see its derivation in Sec-
tion 2) neglects the magnetostatic component. The role
of magnetostatic effects is seen from the fact that, as is
seen from Fig. 4, a better agreement with theory takes
place when H0y = 5, when, as can be supposed, the field
Hy(t) dominates the magnetostatic contribution propor-
tional to ~sinψcosψ in the right-hand side of Eq. (5.1).
Therefore, it can be assumed that H0y = 2.5 is insuffi-
cient to suppress magnetostatic effect, which contrib-
utes to (16) in higher-order perturbation theory and pro-
vides the inaccuracy of (16).

4. CONCLUSIONS

In conclusion, we note that in this work we suggest
a two-frequency mechanism of excitation of domain
walls (DWs). Its difference from the usually single-fre-
quency mechanism is in that the two orthogonal com-
ponents of the exciting field, one of which is collinear
with the easy axis (EA), have different frequencies
linked by a certain relationship. Such mechanism is
sometimes more effective than a one-frequency one.
Thus, for small amplitudes and frequencies of exciting
fields according to Eq. (29) of [4] rewritten in variables

(3) used in this paper we obtain the velocity of drift of
a DW equal to |〈 (t)〉| = H0xH0z(2Qα), which, in con-
trast to (16), vanishes at Q  ∞. The corrections ~1/Q
to the DW drift which are proportional to ~1/Q in the
case of a strong field rotating in the basal plane, based
on the numerical integration of the Landau–Lifshitz
equations, were analyzed in [5], where also the effect of
twisting on the DW drift was discussed for films with
perpendicular anisotropy and Q � 1—a common object
of experimental investigations; this effect, as can be
expected, should become weaker with decreasing film
thickness.
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Fig. 4. Field dependence of the frequency of rotation
Ω(H0z) at two values of the field H0y perpendicular to the
DW plane: solid curve, plotted using Eq. (17) at H0y = 5;
points, numerical calculation via Eq. (2); the data for H0y =
2.5 are multiplied by 4.


