ТЕОРИЯ МЕТАЛЛОВ

УДК 537.611.2

ИЗЛУЧЕНИЕ СПИНОВЫХ ВОЛН ДОМЕННОЙ ГРАНИЦЕЙ (ДГ) ОДНООСНОГО СИЛЬНОАНИЗОТРОПНОГО ФЕРРОМАГНЕТИКА В РЕЖИМЕ ПРЕЦЕССИОННОЙ ДИНАМИКИ ПОД ДЕЙСТВИЕМ ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ

© 2009 г. Г. Е. Ходенков

Институт электронных управляющих машин, 125502 Москва, ул. Лавочкина, 12 Поступила в редакцию 19.05.2008 г.

Проводится численное интегрирование уравнений Ландау-Лифшица для бездиссипативного сильноанизотропного одноосного ферромагнетика в области непараметрического порогового излучения спиновых волн доменной границей (ДГ), совершающей движение в режиме прецессионной динамики в сильном постоянном магнитном поле. Отклонение вычисленных значений поступательной скорости ДГ, отличной от нуля вследствие обратного действия поля излучения на нее, от известных аналитических результатов возрастает с уменьшением константы одноосной анизотропии и с приближением действующего поля к пороговому значению. Обращается внимание на зависящую от направления скорости ДГ асимметрию поля излучения относительно плоскости ДГ.

PACS: 75.30.Ds, 75.60.Ch

1. ВВЕДЕНИЕ

Настоящая работа посвящена исследованию излучения объемных спиновых волн 180° доменной границей (ДГ) в ферромагнетике типа "ось легкого намагничивания" (ОЛН) под действием постоянного магнитного поля H_z, коллинеарного ОЛН. Одноосный ферромагнетик предполагается сильноанизотропным в смысле выполнения неравенства $Q \equiv K/2\pi M^2 \gg 1$ (K – положительная константа одноосной анизотропии, М – намагниченность образца), а ДГ – пространственно одномерной. Согласно теоретическим результатам [1-3], достаточно сильное поле H_7 вызывает прецессию спинов, локализованных внутри ДГ, с частотой γH_z (γ – магнитомеханическое отношение). Взаимодействия, содержащие оси симметрии порядка n = 2, 3, 4... относительно поворотов в базисной плоскости ферромагнетика, модулируют исходную прецессию с частотой упН_г. Когда частота үпН_г попадает в область непрерывного спектра объемных спиновых волн, становится возможным пороговое непараметрическое излучение спиновых волн в объемы прилегающих к ДГ доменов. В [1, 2] в качестве неинвариантного взаимодействия рассматривался случай n = 2 (локальное магнитодипольное взаимодействие), так что для $Q \ge 1$ канал излучения открывается при $H_z \ge H_a/2$, где $H_a = 2K/M - эффективное поле ани$ зотропии. Интерпретация некоторых экспериментальных особенностей высокополевой динамики ДГ, наблюдаемых в пленках одноосных феррит-гранатов, с указанной выше точки зрения, проводилась в [4] и в ряде последующих работ Рандошкина и сотрудников.

Ввиду важности прецессионного режима ДГ в реализации рассматриваемого механизма излучения спиновых волн, необходимо сделать несколько общих замечаний о режимах движения пространственно одномерных ДГ. Известное решение Уокера [5] для движущейся с постоянной скоростью ДГ неизменного профиля ограничено сверху как по полю $H_z < H_w = 2\pi M \alpha$ (здесь α – параметр затухания Гильберта), так и по скорости ДГ $V < V_w \approx 2\pi\gamma M\Delta (\Delta = (A/K)^{1/2} - параметр шири$ ны ДГ; А – обменная жесткость, неравенство относится к случаю $Q \ge 1$). Если $H_z > H_w$, то движение ДГ переходит в прецессионный режим, в котором профиль волны не сохраняется. В ДГ происходит прецессия спинов, и ее толщина периодически меняется, причем наряду с поступательным ДГ совершает колебательное перемещение (при $\alpha = 0$ движение носит чисто колебательный характер). В рамках сокращенного описания динамики ДГ, уравнений Слончевского, этот режим был предложен в [6, 7]; его численная верификация с использованием уравнений Ландау-Лифшица в области умеренных H_z была проведена в [8]; в [9] дана интерпретация на основании гамильтонова формализма. Отметим ради полноты, что в области $H_z > H_w$ альтернативный прецессионному сценарий движения был предложен в [10]. Механизм, для которого существенна конечность затухания α, основан на образовании кластеров, состоящих из нескольких 180° ДГ различных полярностей. Излучения спиновых волн, которое исследуется в

настоящей работе, не использует предположения о конечности параметра затухания.

Ниже проводится численное интегрирование уравнений Ландау-Лифшица для бездиссипативного сильноанизотропного одноосного ферромагнетика в области излучения спиновых волн. Наблюдается, как и следует из аналитической теории, асимметрия поля излучения относительно плоскости ДГ и его обратное действие на ДГ, вызывающее ее поступательное перемещение. Численные результаты сравниваются с теоретическими выводами [1-3], основанными на вычислениях амплитуд спиновых волн в первом порядке по $1/Q \ll 1$. Отклонение вычисленных значений скорости ДГ от теоретических возрастает с уменьшением Q и с приближением действующего поля к пороговому значению сверху.

2. ПРИБЛИЖЕННЫЕ УРАВНЕНИЯ, АНАЛИТИЧЕСКИЕ РЕЗУЛЬТАТЫ

В данном разделе проводится вывод и исследование уравнений, описывающих излучение спиновых волн в первом порядке по $1/Q \ll 1$. При выводе уравнений используется асимптотический подход, отличающийся от представленного в [2] большей полнотой и учетом поля H_z в основном (нулевом) приближении.

Рассмотрим одноосный ферромагнетик с ОЛН, коллинеарной оси 0z, полагая, что единичный вектор намагниченности $\mathbf{m}(y, t) = \mathbf{M}(y, t)/|\mathbf{M}|$ зависит только от одной пространственной координаты у и времени t, и 180° ДГ располагается в плоскости x0z. Лагранжиан L системы уравнений Ландау-Лифшица разделим на две части $L = L_0 + L_1$, где L_0 описывает основное состояние, L_1 – возмущение. В основное состояние $L_0 = T_0 - w_0$ последовательно входят плотности "кинетической" и "потенциальной" энергий:

$$T_0 = -2m_2 \frac{d}{dt} \operatorname{arctg} \frac{m_y}{m_x},\tag{1}$$

$$w_0 = \mathbf{m'}^2 - m_z^2 - 2H_z m_z.$$
 (2)

В (2) вносят вклады неоднородный обмен (штрихдифференцирование по у), одноосная анизотропия и взаимодействие с внешним полем H_z. В качестве возмущения в пределе $Q \ge 1$ выбирается магнитодипольная энергия

$$L_1 = w_1 \equiv -m_y^2 / Q.$$
 (3)

В (1)-(3) входят следующие безразмерные величины (слева от стрелок):

$$L \longrightarrow L/K; \quad y \longrightarrow y/\Delta; \quad t \longrightarrow \gamma H_a t; H_z \longrightarrow H_z/H_a,$$
(4)

где $\Delta = (A/K)^{1/2}$ – параметр ширины ДГ; A – константа неоднородного обмена; остальные обозначения были введены ранее. Учитывая в Лагранжиане постоянство длины вектора намагниченности $\mathbf{m}(y, t)^2 = 1$ с помощью аддитивного вклада $L \longrightarrow L + \lambda \mathbf{m}^2$, где λ – множитель Лагранжа, после варьирования и векторного умножения на m, исключающему λ , приходим к уравнениям [**m**, $\delta L/\delta \mathbf{m}$] = $2\dot{\mathbf{m}} - [\mathbf{m}, \delta w/\delta \mathbf{m}] = 0$. Эти уравнения эквиваленты обычным уравнениям Ландау-Лифшица

$$\dot{\mathbf{m}} = -[\mathbf{m}, \mathbf{H}^{\text{er}}], \tag{5}$$

где в силу замены (4) эффективное поле H^{ef} = $= -(\delta w / \delta \mathbf{m})/2$. В угловых переменных

$$m_{x,y}(y, t) = \sin\theta(\cos\varphi, \sin\varphi), \quad m_z(y, t) = \cos\theta, \quad (6)$$

которые также понадобятся в последующем, уравнения (5) имеют вид

$$\sin\theta\dot{\vartheta} = -(\delta w/\delta \varphi)/2, \quad \sin\theta\dot{\varphi} = (\delta w/\delta \theta)/2, \quad (7)$$

точки над переменными обозначают дифференцирование по t.

Определим теперь нулевое приближение, отвечающее L_0 . Подставляя (6) в (1), (2), с использованием (7) получаем уравнения

$$\sin\theta\phi + \vartheta'' - \sin\theta\cos\theta(\phi'^2 + 1) - H_z\sin\theta = 0, (8.1)$$

$$\sin\theta\dot{\varphi} - (\sin^2\vartheta\varphi')' = 0. \tag{8.2}$$

Решение (8) для 180° ДГ с азимутальным углом ф, который прецессирует под действием внешнего поля H_{z} , имеет вид:

$$\vartheta = 0, \quad \cos\theta = -\operatorname{th} Y;$$
 $\dot{\varphi} - H_z = 0 \quad \mu \quad \varphi = H_z t + \operatorname{onst},$
(9)

где Y = y - q(t) – локальная координата, q(t) – положение центра ДГ на оси 0у. Зависимость положения ДГ от времени q = q(t) учитывается в следующем приближении.

Решение уравнений излучения первого порядка по 1/Q ищем в виде

$$\mathbf{m} = \mathbf{R}[\theta(Y), \phi(t)]\tilde{\mathbf{m}}, \qquad (10)$$

1

где т – компоненты намагниченности в неподвижной (лабораторной) системе координат, в которой записаны (1)-(3). В движущейся вместе с нулевым решением (9) подвижной системе координат намагниченность имеет вид $\tilde{\mathbf{m}} = (\tilde{m}_x, \tilde{m}_y, \tilde{m}_y)$

$$(1 - \tilde{m}_x^2 - \tilde{m}_y^2)^{1/2})$$
. Ортогональная матрица

$$\mathbf{R} = [\theta, \varphi] = \begin{pmatrix} \cos\vartheta \cos\varphi - \sin\varphi \sin\vartheta \cos\varphi \\ \cos\vartheta \sin\vartheta \ \cos\varphi \ \sin\vartheta \sin\varphi \\ -\sin\varphi \ 0 \ \cos\vartheta \end{pmatrix}, (11)$$

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 107 <u>№</u> 6 2009

=

где углы θ и ϕ определены (9), сохраняет единичность длин векторов намагниченности в обеих системах $m^2 = \tilde{m}^2 = 1$. Решение представляем в виде следующих рядов по 1/Q:

$$\tilde{\mathbf{m}}_{x,y}(Y,t) = \tilde{\mathbf{m}}_{x,y}^{(1)} + \tilde{\mathbf{m}}_{x,y}^{(2)} + \dots, \qquad (12.1)$$

$$q(t) = q^{(0)} + q^{(1)}(t) + \dots$$
(12.2)

Подставляя (10) в полный Лагранжиан L, варьируем его по двум независимым переменным \tilde{m}_x , \tilde{m}_y (процедура варьирования аналогична [2], где и можно найти необходимые формулы). В полученные уравнения подставляем разложения (12) и находим с учетом (9) в первом порядке по 1/Q:

$$\tilde{m}_{y}^{(1)} - \hat{L}_{W}\tilde{m}_{x}^{(1)} = f_{x},
\tilde{m}_{x}^{(1)} + \hat{L}_{W}\tilde{m}_{y}^{(1)} = f_{y},$$
(13)

где неоднородные части (13) равны

$$f_{x} = \sin\theta\cos\theta\sin^{2}\varphi/Q,$$

$$f_{y} = -\sin\theta\cos\varphi\sin\varphi/Q.$$
(14)

Дифференцирование по времени в $\dot{m}_{x}^{(1)}(Y, t)$, $\dot{m}_{y}^{(1)}(Y, t)$ выполняется только по второй независимой переменной – t, так как дифференцирование Y(t) вносит вклад второго порядка. Оператор $\hat{L}_{W} = -\mathbf{d}^{2}/\mathbf{d}Y^{2} - \cos 2\vartheta(Y)$ имеет ортонормированный полный набор: дискретная мода $\chi_{tr}(Y)$ (трансляционный уровень спектра), $\hat{L}_{W}\chi_{tr}(Y) = 0$, которая делает \hat{L}_{W} особым, и функции непрерывного спектра $\chi_{pr}(Y, k)$ (прецессионный спектр), $\hat{L}_{W}\chi_{pr}(Y, k) = (1 + k^{2})\chi_{pr}(Y)(-\infty > k > \infty)$. Собственные функции имеют вид

$$\chi_{\rm tr}(Y) = 1/(2^{1/2} \operatorname{ch} Y)^{-} \equiv \sin \theta^{(0)};$$

$$\chi_{\rm pr}(Y,k) = \hat{L}^{+} \exp(ikY) / [2\pi(1+k^{2})]^{1/2},$$
(15)

где оператор $\hat{L}^+ = d/dY - \text{th } Y$.

Уравнения (13) в общем случае [2] содержат четыре неизвестных функции $\tilde{m}_{x,y}$, q(t) и $\varphi(t)$, но последняя в рассматриваемом случае уже определена нулевым приближением, см. (9). Функция $q^{(1)}(t)$ определяется из условия разрешимости уравнений (13), т.е. ортогональности правой части (13) дискретной моде $\chi_{tr}(Y)$. При этом в левой части трансляционные составляющие $(\tilde{m}_{x,y}^{(1)})_{tr}$, как и сами функции $(\tilde{m}_{x,y}^{(1)})_{tr} \sim \sin\theta = \vartheta'$, можно положить равными нулю, так как их динамика сводится к динамике $\varphi(t)$ и $q^{(1)}(t)$. Действительно,

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 107 № 6

сравним вариации намагниченности в угловых переменных (6), которые равны $\delta\theta = -\vartheta' \delta q$ и $\delta \phi$, с изменениями намагниченности в силу преобразования (10), выражающимися через $(\tilde{m}_{x,y}^{(1)})_{tr}$. Таким образом, получим следующие связи между двумя наборами зависимых переменных: $\delta\theta = (\tilde{m}_{x}^{(1)})_{tr}$, $\delta\phi\sin\theta = (\tilde{m}_{y}^{(1)})_{tr}$. Динамика трансляционных компонент намагниченности выражается через угловые переменные. В свою очередь, как следует из условия разрешимости (14), динамика угловых переменных (в безразмерных переменных (4)) подчиняется (в данном конкретном случае) уравнениям Слончевского в их простейшем варианте [2, 6, 7]:

$$H_z - \dot{\varphi} = 0, \quad \dot{q}^{(1)} + \cos\varphi \sin\varphi/Q = 0.$$
 (16)

С другой стороны, после учета (16) в (13), получаем искомые спин-волновые уравнения:

$$\tilde{\tilde{m}}_{y}^{(1)} - \hat{L}_{W}\tilde{m}_{x}^{(1)} = \sin\theta\cos\theta\sin^{2}\varphi(H_{z}t)/Q; \quad (17.1)$$

$$\hat{n}_x^{(1)} + \hat{L}_W \tilde{m}_y^{(1)} = 0.$$
 (17.2)

Функции $\tilde{m}_x^{(1)} \sim \partial \vartheta / \partial \Delta \sim y \sin \theta$, $\tilde{m}_y^{(1)} = 0$ удовлетворяют статическим уравнениям (17) с правой частью, см. (9) и (4), поэтому можно заключить, что в динамическом случае уравнения (17) описывают колебания ширины ДГ. Выделив в правой части (17) осциллирующий сомножитель $-\cos(2H_z t)/2$, можно представить решение (17) в виде действительной части разложения

$$\tilde{m}_{x}^{(1)}(Y,t) = \exp(-2iH_{z}t)\int_{-\infty}^{\infty} \chi_{k}(Y)\tilde{m}_{x}(k)dk = \frac{-\hat{L}^{+}}{2Q(2\pi)^{1/2}}\int_{-\infty}^{\infty} \frac{\exp(ikY)(1+k^{2})^{1/2}(\sin\vartheta\cos\vartheta)_{k}dk}{[(2H_{z})^{2}-(1+k^{2})^{2}]} \times \exp(-2iH_{z}t),$$

$$(\sin\theta\cos\theta)_{k} = \frac{\pi(1+k^{2})^{1/2}}{2(2\pi)^{1/2}\operatorname{ch}(\pi k/2)}$$

(и аналогично для $\tilde{m}_{y}^{(1)}(Y, t)$). Собственная функция трансляционного спектра $\chi_{tr}(Y)$ не вносит вклада в излучение в силу симметрии задачи.

Если полюсы подынтегрального выражения (18) не попадают на вещественную ось $(H_z < 1/2)$, имеют место экспоненциально затухающие колебания намагниченности при удалении от центра ДГ. В случае $H_z > 1/2$, когда частота и волновые числа удовлетворяют соотношениям

$$\omega_0 = 2H_z, \quad k_{1,2} = \pm k_0, \quad k_0 = (2H_z - 1)^{1/2}, \quad (19)$$

2009

происходит излучение монохроматических спиновых волн с $\omega_0 = 1 + k_0^2$. Амплитуду расходящихся от ДГ в обе стороны спиновых волн получают вычислением интеграла (18) в комплексной плоскости k. При Y — » « контур интегрирования вдоль вещественной оси замыкается в верхней полуплоскости k и охватывает полюс k₁ снизу, оставляя k_2 вне замкнутого контура; при $Y \longrightarrow -\infty$ контур замыкается в нижней полуплоскости и охватывает полюс k_2 снизу, оставляя k_1 вне замкнутого контура. Чисто мнимые полюсы подынтегрального выражения не учитываются, так как их вклад затухает экспоненциально при *|Y*| → ∞. После отделения действительных частей получаем расходящиеся спиновые волны в подвижной системе координат:

$$\tilde{m}_{x}^{(1)}(|Y| \longrightarrow \infty, t) =$$

$$= a[-k_{0}\cos(k_{0}|Y| - 2H_{z}t) + \sin(k_{0}|Y| - 2H_{z}t)];$$
(20.1)

$$\tilde{m}_{y}^{(1)}(|Y| \longrightarrow \infty, t) =$$
(20.2)

$$= a[k_0 \sin(k_0|Y| - 2H_z t) + \cos(k_0|Y| - 2H_z t)];$$
(20.2)

$$a = \pi / [16Qk_0 \operatorname{ch}(\pi k_0 / 2)].$$
 (20.3)

После перехода в лабораторную систему, подставив (20) в (11)), получим:

$$m_x^{(1)}(Y \longrightarrow \infty, t) =$$

$$= a[k_0 \cos(k_0 Y - H_z t) - \sin(k_0 Y - H_z t)];$$
(21.1)

$$m_x^{(1)}(Y \longrightarrow -\infty, t) =$$
(21.2)

$$= -a[k_0\cos(k_0Y + 3H_zt) + \sin(k_0Y + 3H_zt)];$$
(21.2)

$$m_y^{(1)}(Y \longrightarrow \infty, t) =$$

$$= a[\cos(k_0 Y - H_z t) + k_0 \sin(k_0 Y - H_z t)];$$
(21.3)

$$m_{y}^{(1)}(Y \longrightarrow \infty, t) =$$

= $a[\cos(k_{0}Y + 3H_{z}t) - k_{0}\sin(k_{0}Y + 3H_{z}t)].$ (21.4)

Заметим, что расходящиеся волны, обладающие симметрией в подвижной системе координат, теряют ее в неподвижной и распространяются с различными фазовыми скоростями

$$V_{\rm p+} = (\mathbf{d}y/\mathbf{d}t)_{\rm p+} = H_z/k_0 + \dot{q}, \quad y \longrightarrow \infty; \qquad (22.1)$$

$$V_{\rm p-} = (\mathbf{d}y/\mathbf{d}t)_{\rm p-} = -(3H_z/k_0 - \dot{q}) \quad y \longrightarrow -\infty, \quad (22.2)$$

где \dot{q} – поступательная скорость ДГ в первом приближении, см. (9).

Для вычисления средней скорости ДГ вследствие обратного действия излучаемых ею спиновых волн V_{sw} , обратимся к уравнению баланса энергии, следующему из уравнений (5)

$$\dot{w} - 2(\dot{\mathbf{m}}\mathbf{m}')' = 0 \tag{23}$$

и записанному в неподвижной системе отсчета. Интегрируя (23) в бесконечных пределах по dy, получаем с использованием представления (21)

$$-2(\dot{\mathbf{m}}\mathbf{m}')|_{y=-\infty}^{y=\infty} = 2a^{2}k_{0}(1+k_{0}^{2})(H_{z}+k_{0}V_{sw}) - (24)$$

$$-2a^{2}k_{0}(1+k_{0}^{2})(-3H_{z}+k_{0}V_{sw}) = 8a^{2}k_{0}(1+k_{0}^{2})H_{z}.$$

Обратим внимание на то, что поток энергии распределен несимметрично относительно плоскости ДГ. Интегрирование \dot{w} , после усреднения по "быстрым" осцилляциям с частотой $\sim H_a$, определяет мощность, передаваемую внешним полем H_z магнитной системе: $-4H_zV_{sw}$. После этого с помощью (23) получаем скорость ДГ, которую представим ниже в размерных переменных

$$V_{\rm sw} = \left(\frac{\pi}{8}\right)^2 \frac{\Delta \gamma H_z}{Q^2 \Delta k_0(H_z)} \times \frac{1}{\operatorname{ch}^2(\pi \Delta k_0(H_z)/2)}, \quad H_z > H_a/2$$
(25)

(здесь теперь $k_0(H_z) = (2H_z/H_a - 1)^{1/2}/\Delta)$. Формула (25) с учетом затухания была впервые получена в [3] (см. формулу (28) этой работы) другим методом, но там она содержит дополнительный множитель 2. В следующем разделе будет проведена численная проверка этого и других результатов настоящего раздела.

3. ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ, РЕЗУЛЬТАТЫ

Верификация аналитических результатов, изложенных в предыдущем разделе, осуществляется путем прямого численного интегрирования пространственно одномерных уравнений Ландау-Лифшица (5).

Прежде всего на основании (5) определим смещение самой ДГ под действием внешнего магнитного поля. Для этого будем искать нули численно вычисляемой компоненты намагниченности $m_z(y, t)$, которые и будут определять положение центра 180° ДГ. Согласно уравнениям Слончевского (6) и выражению для скорости ДГ (25), положение центра ДГ в области излучения $H_z > 1/2$ задается функцией (при выборе начального условия $m_y(y, 0) = 0$, т.е. q(0) = 0)

$$q(t) = q^{(1)}(t) + V_{sw}t = [1 - \cos(2H_z t)]/4QH_z + V_{sw}t.$$
 (26)

Справа в (26) входят: осциллирующий член, следующий из уравнений Слончевского, см. (6), и слагаемое, описывающее поступательное смещение ДГ вследствие обратного действия излучения спиновых волн (безразмерная скорость в (26) равна $V_{\rm sw} \longrightarrow V_{\rm sw}/(\Delta \gamma H_a)$, см. (4)). Типичная картина зависимости положения центра ДГ от времени q(t), полученная численным интегрированием (5),

Рис. 1. Типичная зависимость скорости центра ДГ от времени (сильно осциллирующая верхняя кривая) и та же зависимость после исключения из нее осцилляций по Слончевскому (нижняя кривая), выделяющая систематическое поступательное смещение ДГ. Средняя скорость смещения определяется по общему углу наклона нижней кривой β.

представлена на рис. 1 Сильно осциллирующая верхняя кривая получена из уравнения $m_{g}(y, t) = 0$; нижняя, сглаженная – вычитанием из верхней суммарной кривой осцилляций ДГ, возникающих в силу уравнений Слончевского (16), т.е. из уравнения $m_{g}(y + q^{(1)}(t), t) = 0$. Малость амплитуды сглаженной кривой указывает на хорошую применимость теории Слончевского. Эта кривая позволяет определить по тангенсу ее угла наклона β (см. рис. 1) поступательную скорость смещения ДГ. В рассматриваемом случае $V_{sw} = 8.2 \times 10^{-4}$, тогда как вычисленное по (25) значение – 7.2×10^{-4} . Расхождение можно отнести к поправкам $\sim 1/Q$, которые не учитывается осцилляциями ДГ в силу уравнений Слончевского (16) и смещением ДГ в силу излучения спиновых волн.

На рис. 2 и 3 представлены зависимости скорости ДГ $V_{sw}(Q)$ при H_z = const и $V_{sw}(H_z)$ при Q = const. Скорости ДГ определялись указанным в предыдущем параграфе способом. Сравнение нанесенных теоретических кривых (25) с вычисленными по решениям уравнения Ландау-Лифшица значениями скорости показывает удовлетворительное общее качественное согласие (учет дополнительного множителя 2, содержащегося, согласно [3], в правой части (25), ухудшает согласие). Расхождение возрастает с приближением поля к пороговому значению $H_z = 1/2$ и с уменьшением Q. Возможно, что часть этих расхождений объясняется недостаточностью линейных по 1/Q приближений (16) и (17), с помощью которых получена используемая для сравнения формула (25).

В заключение этого раздела обратимся к изучению структуры спин-волнового поля, излучаемого ДГ. Поскольку в рамках численного моделирования уравнения Ландау-Лифшица (5) решается задача с начальными условиями (задача Коши), то на плоскости y0t идеальное волновое поле, представляемое формулами (21), может существовать лишь в некоторых ограниченных областях, расположенных внутри двух волновых пакетов, излучаемых вправо и влево от центра ДГ. В каждом конкретном случае имеющиеся вычислительные возможности в той или иной степени ограничивают размеры пространственно-временной области y0t, доступной для сравнения с (21).

Наглядное представление структуры поля и фазовых соотношений между волнами можно получить с помощью функции

$$T_i(y) = t_{00} + j(2\pi/3H_z) + sm0_x(y, t_{00} + j(2\pi/3H_z)),$$
 (27)

Рис. 2. Зависимости скорости ДГ V_{sw} от фактора качества Q.

Рис. 3. Зависимости скорости ДГ V_{sw} от безразмерного внешнего магнитного поля H_2/H_a .

стробирующей волновое поле $m_x(y, t)$ через минимальный временной теоретический период по времени $2\pi/3H_z$ (или аналогичного выражения для $m_y(y, t)$), и построить $T_j(y)$ для j = 0-3 на плоскости y0t. Здесь s – выбираемый из соображений удобства масштабный множитель; t_{00} – начальный момент времени; выбранный полный временной интервал $2\pi/H_z$ охватывает один период по времени $2\pi/H_z$ волны, уходящей вправо, и три периода волны $2\pi/3H_z$, уходящей влево по оси y, см. (21). Для совмещения масштабов кривых на рис. 4 из $m_x(y, t)$ удалено нулевое решение $m0_x(y,t) =$ $= m_x(y, t) - \cos H_z t/ ch (y + q^{(1)}(t)) с максимальной ам$ $плитудой <math>|m_{x,y}(0, t)| \sim 1$, см. (9), (10), которое локализовано в области вблизи центра ДГ. На рис. 4 изображен типичный фрагмент спинволнового поля для тех же значений параметров $Q = 10, H_z = 0.7,$ что и на рис. 1, s = 30, шаг дискретизации по времени $2\pi/3H_z$ (≈ 3). Волновые пакеты со средними значениями амплитуд $|m_{x,y}(y, t)| \sim$ ~ 0.02–0.04 излучаются вправо и влево с групповыми скоростями $V_{g(+,-)} = \mathbf{d}\omega_{(+,-)}/\mathbf{d}k$. Здесь

$$\omega_{(+,-)} = \left((1+k^2 \mp H_z)(1+k^2 \mp H_z + 1/Q) \right)^{1/2} + V_{sw}k$$
(28)

– законы дисперсии сред в неподвижном правом (y > 0) и левом (y < 0) доменах, мало отличающиеся друг от друга при Q = 10 и соответствующих значениях V_{sw} (см. рис. 2 и 3). Фронты излучения

Рис. 4. Фрагмент асимметричного спин-волнового поля намагниченности $m_x(y, t)$ на пространственно-временной плоскости (нулевое приближение, локализованное вблизи области y = 0, удалено). Шаг изменения по времени $2\pi/3H_z \approx 3$ (j = 0-3). Волновые пакеты слева и справа от ДГ y = 0 ограничены внешними прямыми $y = V_{g(+, -)}t$, где $V_{g(+, -)} -$ соответствующие групповые скорости. При постоянном y средние значения фаз в левом домене совпадают через $2\pi/3H_z$, в правом – через $2\pi/H_z$. Внутри пакетов построены две характеристики с различающимися фазовыми скоростями. Средняя амплитуда осцилляций намагниченности в пакете ~(0.02-0.04)M (s – коэффициент масштабирования $m_x(y, t)$ равен 30).

ограничены двумя внешними наклонными прямыми $y = V_{g(+, -)}t$, как показано на рис. 4. Здесь же изображены также две характеристики $y = V_{g(+, -)}t$, расположенные внутри волновых зон ($V_{p(+,-)}$ – фазовые скорости (22), различающиеся для обоих доменов). Теоретические значения временных периодов в правом $T_{+} = 2\pi/H_{z} \approx 9$ и левом $T_{-} =$ $= 2\pi/3H_z \approx 3$ доменах соответствуют средним значениям, определенным с помощью рис. 4. Напротив, длины волн излучения в волновых зонах правого и левого домена $2\pi/k_0$ ($k_0 = (2H_z - 1)^{1/2}$, см. (19)) одинаковы ~9.9, что также соответствует данным на рисунке. Как видно из рис. 2 и 3, скорости ДГ V_{sw} слишком малы, чтобы привести к заметному изменению волновой картины за счет смещения центра ДГ в течение использованного для построения рис. 4 интервала времени.

4. ОБСУЖДЕНИЕ И ЗАКЛЮЧЕНИЕ

В заключение остановимся на нескольких вопросах, представляющих интерес в связи с результатами настоящей работы. Один из них связан с возможностью понижения порогового поля $H_z = H_a/2$, довольно значительная величина которого зависит от порядка оси симметрии магнитостатического взаимодействия (3) относительно поворотов в базисной плоскости одноосного ферромагнетика. Можно заметить, что аналогичный рассмотренному выше механизм излучения возникает, например, если, наряду с магнитодипольной, включить в возмущение L_1 исходного Лагранжиана, см. (3), кубическую анизотропию $w_c = -K_c(m_x^4 + m_y^4 + m_z^4)/2.$

Если константа кубической анизотропии $K_c > 0$, возникающие три ОЛН коллинеарны осям неподвижной координатной системы, использованным в настоящей работе. Добавки к правым частям f_x и f_y (14) получаем тем же способом, что и при выводе уравнений (13)

$$\delta f_x = -\cos\theta \sin\theta \cos^4 \varphi / Q_{c4} + \dots$$

$$\mu \ \delta f_x = \sin^3 \theta \sin\varphi \cos^3 \varphi / Q_{c4} + \dots,$$
(29)

где многоточия обозначают члены более низкого порядка по степеням sinф или соsф и $Q_{c4} = K/K_c > 1$. Добавки (29), как ясно из (14), ведут к пороговой величине поля $H_z = H_a/4$. В случае отрицательного знака K_c аналогичные соображения ведут к порогу $H_z = H_a/3$.

Еще один вопрос связан с учетом затухания на излучение спиновых волн, что особенно важно вблизи порога, где скорость ДГ V_{sw} (25) обращается в бесконечность. Согласно [3], затухание приводит к тому, что скорость ДГ становится ко-

Рис. 5. Зависимость скорости ДГ от магнитного поля в области излучения спиновых волн. Три наклонные прямые $V = \alpha H_z$ – скорости ДГ в отсутствии излучения при указанных на рисунке значениях параметра затухания α .

нечной в точке порога и отличной от нуля в области $H_z < 1/2$. Здесь дополнительно к этому эффекту рассмотрен еще аддитивный вклад в динамику ДГ затравочного затухания Гильберта. Дополним правую часть уравнение баланса энергии (23) слагаемым, учитывающим диссипацию по Рэлею: $2\alpha \dot{\mathbf{m}}^2$, где α – безразмерный параметр затухания Гильберта. Если учесть пополнительное слагае-

Гильберта. Если учесть дополнительное слагаемое в нулевом приближении (см. (9) и (10)), то для полной скорости ДГ получим выражение

$$V = V_{\rm sw} + \alpha \Delta \gamma H_z, \tag{30}$$

отличающееся от соответствующего выражения в [3] наличием второго слагаемого справа.

Для устранения расходимости V_{sw} (25) в точке порога достаточно определить комплексное k из закона дисперсии $\omega = 1 + k^2 - i\alpha\omega$ при $\omega = 2H_z$, где $\alpha \ll 1$, и подставить вещественную часть корня в (25). При незначительном отступлении от порога вещественная часть k равна

$$\Delta k_0(H_z) = ((2H_z/H_a - 1)^2 + (2\alpha H_z/H_a)^2)^{1/2}.$$
 (31)

Характерный вид зависимостей (30) при различных значениях параметра α изображен на рис. 5. Как и в [3], десятикратное увеличение α ведет к примерно тому же падению пикового значения скорости (3.5 раза).

Проведенное в настоящей работе сравнение численных результатов, полученных интегрированием уравнения Ландау-Лифшица (5), с результатами аналитической теории, изложенной в разд. 2, показывает общее удовлетворительное согласие. Выявлена асимметричная в лабораторной системе структура поля спиновых волн, излучаемых ДГ (см. (21) и рис. 4). Скорость, приобретаемая ДГ вследствие обратного действия излучения (см. (25)), также согласуется с численными результатами, представленными на рис. 2, 3. Необходимо отметить однако, что имеющееся расхождение аналитических и численных результатов возрастает как с уменьшением $Q = H_a/4\pi M$, так и с приближением поля Н_я к пороговому значению $H_a/2$. Как можно предполагать, такое расхождение может быть уменьшено при учете следующих по отношению к уравнениям (13), (14) приближений по 1/Q, которые будут включать эффекты взаимодействие спиновых волн, нелинейный сдвиг порогового значения поля и др.

СПИСОК ЛИТЕРАТУРЫ

- Ходенков Г.Е. Излучение спиновых волн при движении блоховской ДГ в ферромагнетиках с большой константой анизотропии // ФММ. 1975. Т. 39. Вып. 2. С. 466–472.
- Ходенков Г.Е. Структура ДГ в ферромагнетике с большим фактором качества // ФММ. 1994. Т. 78. Вып. 3. С. 33–37.
- Иванов Ю.И. Динамика ДГ в спин-волновом приближении // ЖЭТФ. 1981. Т. 81. Вып. 2. С. 612–626.
- 4. *Рандошкин В.В., Сигачев В.Б.* О механизме зарождения микродоменов вблизи движущейся домен-

ной стенки // ФТТ. 1986. Т. 28. Вып. 5. С. 1522-1524.

- 5. Walker L.R. (unpubl.). Quoted by Dillon F. in Dynamics of domain walls. Magnetism ed. by Rado G.T., Suhl H. New-York: Pergamon Press, 1963. V. 3. P. 451-465.
- 6. Slonczewski J.C. Dynamics of magnetic domain walls // Intern. J. Magnet. 1972. V. 2. № 2. P. 85–97.
- 7. Малоземов А., Слонзуски Дж. Доменные стенки в материалах с ЦМД. М.: Мир, 1982. 382 с.
- 8. Shryer N.L., Walker L.R. The motion of 180° domain walls in uniform DC magnetic field // J. Appl. Phys. 1974. V. 4. № 12. P. 5406–5421.
- 9. Косевич А.М., Иванов Б.А., Ковалев А.С. Нелинейные волны намагниченности. Динамические и топологические солитоны. Киев: Наукова Думка, 1988. 190 c.
- 10. Елеонский В.М., Кирова Н.Н., Кулагин Н.Е. Динамика ДГ во внешнем магнитном поле // ЖЭТФ. 1979. Т. 76. Вып. 2. С. 705–710.