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Abstract — A closed formulation is proposed for the nonlinear problem of domain-wall motion in a tangentially
magnetized ferromagnetic layer. The domain-wall bowing caused by the inhomogeneous distribution of eddy
currents weakens the drag produced by the eddy-current magnetic field. For this reason, nonlinearities bring
about an increase in the velocity of domain-wall motion as compared with the linear mobility law. In typical
cases, the domain-wall mass associated with the relaxation of domain-wall bowing exceeds the Déring mass.

INTRODUCTION

The domain-wall motion in conducting ferromag-
netic materials is accompanied by a change in the mag-
netic flux density through a stationary loop enclosing it
and gives rise to eddy currents. By Lenz’s law, the mag-
netic field set up by eddy currents opposes the domain-
wall motion in the applied field. Because eddy currents
are damped out in media with a nonzero conductivity,
the domain-wall mobility is finite. The domain-wall
dynamics and the associated important problem of
electromagnetic losses with magnetization reversal
have been the subject of many studies reviewed in
Refs. [1, 2].

Except for the linear approximation, the theory of
domain-wall dynamics and electromagnetic losses is
built on a numerical basis. There is a special difficulty
in taking proper account of the domain-wall bowing
associated with the drag produced by the magnetic field
which is set up by eddy currents nonuniformly distrib-
uted in the specimen. Important results on this subject
are reported in a series of papers by Bishop [3] (further
references can be found in Ref. [2]). A most important
finding is the fact that the losses tend to saturate upon
transition into the nonlinear region. That proper allow-
ance for domain-wall bowing is decisively important
for good agreement to be achieved between experimen-
tal and theoretical results in the nonlinear region has
been stressed in Ref. [4] and also in Ref. [2]. The
present paper is concerned with a theory of first nonlin-
ear corrections to the domain-wall dynamics. The cal-
culations are made with special reference to a
tangentially magnetized layer as it represents a case of
practical significance.

THE PROBLEM

Fig. 1 shows a cross-sectional view, y = ¢(z, ), of a
180° domain wall which separates domains with mag-
netizations M, (y — o) = ¥ M. Its evolution obeys the
equation
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where o is the domain-wall surface energy density and
[q/(1+g®H" is the inverse radius of curvature.
According to Eq. (1), the Laplace tension is balanced
by the “magnetic pressure.” The latter is in two parts:
one is due to the external magnetic field H, = Hy(r) and
the other is due to the field set up by eddy currents at the
domain-wall surface y = g(z, 7). These boundary condi-
tions correspond to the free movement of the domain
wall over the surfaces of the layer, z=%h/2. The
domain-wall structure, intrinsic mass, and damping are
neglected, and the permeability within domains is
assumed to be equal to unity.

Under the conditions of Fig. 1, the eddy-current
field has only one component, H, = H(y, z, f). If we
neglect displacement currents and use Ohm’s law in the
isotropic approximation, then the following well-
known equation stems from Maxwell’s equations:

OH H _ 4moB
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where B = H + 4ntM is the magnetic induction, ¢ is the
velocity of light, and p is the resistivity of the
medium. In the two-dimensional formulation of the
problem in question, the equation div B = 0 is satisfied
automatically. The domain wall in Fig. 1 is free from
demagnetizing fields, and the principal contribution to
the right-hand side of Eq.(2) at low domain-wall
velocities comes from the derivative 0B/dt
OM /3= 2M4(z, H)8(y — q(z, 0). The omitted contri-
bution 0H / dt on the right-hand side of Eq. (2) is asso-
ciated with skin effect; in what follows it is assumed
that the penetration depth of the applied field at fre-
quency ® — 8 = c/(2n w/ p)"? exceeds the thickness
h of the layer ~ an occurrence reflected in Eq. (1). The
contribution made by this term to the losses is esti-
mated in Ref. [5]; to the dynamics of Barkhausen
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Fig. 1.

jumps, in Ref. [6]; to the transient motion of the
domain wall, in Ref. [7]; and to the domain-wall mass,
in Ref. [8]. Instead of a diffusion equation of the type
(2), we thus arrive at the Poisson equation
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inside the layer |z| < (h/2) and the Laplace equation
0°H / 9y? + 0*H / 92 = 0 outside the layer. The bound-
ary conditions for Eq. (3) at the surfaces of a ferromag-
netic layer may be represented as

H(y,4,0)!, 0, = 0. @

They stem from the condition that the normal compo-
nents of the current density

. h
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go to zero, from the continuity of the field at the
boundaries and from the asymptotic condition
H(y, |z] = e°) — 0. Egs. (1) and (3) are the basic equa-
tions of the electrodynamic problem in question, con-
nected with the general problem of determining the
unknown interface between moving phases, or the Ste-
fan problem.

A closed formulation for the problem results if for
its electrodynamic part we use the Green’s function of
Eg. (3) subject to the boundary conditions (4)
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It can most simply be obtained by the fictive image
method [9], proceeding from the potential of a linear
source Gy = (=1/4m)In [(y - yo)* + (z - 2,)*] of the equa-
tion V2G = —¥0)&(z — z5) in an unbounded space.
The solution of Eq. (3) may now be written as
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By substituting Eq. (6) in the domain-wall motion
Eg. (1), we obtain a closed formulation of the problem
without resorting to series expansions. By virtue of the
boundary conditions ¢'(z =% h/2, t) = 0 and on integra-
tion over the layer thickness, we derive from Eq. (1) the
solvability condition

h/2

Hyh- [HO=q@0,20dz=0 O
~h/2

important for the subsequent applications. The sought

solution g(z, #) is symmetric with respect to z and anti-
symmetric with respect to the applicd field Hy(r).

First, we consider the linear case, assuming that the
domain-wall bowing is weak, |¢|/ & << 1, and leaving in
Egs. (1) and (7) the contributions linear in ¢. This leads
us to an integral equation with a singular, symmetric and
positive kernel K(z, zy) and to the simultaneity condition
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When the applied field is held constant, the domain
wall is in a steady-state motion, and the solution of
Eq. (8) may be written as

q(z1) = Got+q(2), ©

where ¢, is the constant velocity and ¢(z) is the shape
of the moving domain wall. The representation in the
form of Eq. (9) also holds for the nonlinear Eq. (1)
under steady-state conditions. On insertion of Eq. (9)
and imegralion of the kernel, Eq. (8) changes to

. 32Mh
qu (z) = Hy— 4oF (2), 10)
where
F@ =fG+ D +fG-TH
f(x) = —Iln(Zsinx/2)dx. an

The function f(x) is the tabulated Klausen integral
[10]. From Eqs.(10) and (11) it follows that g™
diverges logarithmically at the layer boundaries. Corre-
lation with the traditional presentation in the form of a
series is established through expansions

n T
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Upon inserting Eq. (9) and integrating, the linear
simultaneity condition in Eq. (8) defines the unknown
parameter, the domain-wall velocity g, as a function
of the applied ficld via the mobility i (H. Williams,
W. Shockley, Ch. Kittel, 1950)

T Jp
814 (3) MR’
where {(3) = 1.202... is Riemann’s zeta-function. In

view of Eq. (12), Eq. (10) becomes correct, and the
solution to the problem takes the form

Go=WUH, B = 12)
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The smallness parameter of the problem, the dimen-
sionless bowing amplitude, is

1 MHgh

[q( )=a(0) /b= <1 (9

The smallness of the numerical coefficients seems to
suggest a broad region of convergence for the series in
terms of the ratio of magnetic energy to domain-wall
surface energy G.

For subsequent use, it is best to recast the solution
(13) as an eigenfunction expansion explicitly satisfying
the boundary conditions ¢'(z=%* h/2) = 0 for Eq. (1).
As such, we take the eigenfunctions ,(z) of the opera-
tor — d?/d7* on the left-hand side of Eq. (11)

1 [, 7z 21z  3m2
,, W'(sm——, COS — 7 , sin— A ,cos—

-).(15)

To circumvent the concomitant problem of nonorthog-
onality of Eq. (15) and the series in Eq. (13), we resort
to a direct expansion of Eq. (10) in terms of Eq. (15).
The expansion of g(z) contains only the even part of the
complete set in Eq. (15). For the first three harmonics
we obtain

2 4an
q(z, 0= qol_%Sszh (C‘,S_ff_lcm_h_' )
Goc h 6 h -
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As follows from comparison of the approximate
expression (16) with the exact linear expression (14),
the numerical coefficient of the dimensionless bowing
amplitude (14) now is 1/21 instead of 1/20. In deriving
Eq. (16), we have used the relation (for n> 1)
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‘We now proceed to determine nonlinear corrections
for Egs. (12) and (16). If we limit ourselves to the com-
putation of the wall-domain velocity ¢, in Eq. (9), then,
in the first nonlinear approximation, it will suffice to
use the simultaneity condition (7) alone. The symmetry
of the problem (the solution is even in z and odd in Hy)
shows that for the domain-wall velocity to be calcu-
lated accurate to within H¢, it is sufficient to use the
approximation Eq. (16) which is linear in HMh/o.
Then the Green’s function G(g(z) - q(z); 2, Z), Which
is part of the simultaneity condition, expands into a
series containing terms up to [¢(z) — g(zp)}*/ K?, inclu-
sive. The simultaneity condition (7) takes the form

San h/2 h/2
Hoh= — 20 j dz j dzo {K (2, 29)
~h/2  <h/2

n n
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2
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where the positive kernel K(z, zy) is defined in Eq. (8).
Importantly, the first integral on the right-hand side is
positive (it defines the linear part of the problem),
whereas the last one (nonlinear corrections) is negative.
It is, however, necessary to prove that the expansion
(18) is feasible, because the derivatives of the field set
up by eddy currents at the domain-wall surface suffer
discontinuities. Let us show that the Green’s function
G(q(2) ~ q(zo); 2, 2), Which is part of the simultaneity
condition (7), can be partitioned into a sum of two
terms: a singular term, K(z, zp), defined by Eq. (8), and
a term which is regular at low domain-wall velocities.
Because the exact solution of g(z) is representable as an
expansion in terms of Eq. (15), it follows that

q(2) —q(zy)

- .7 .
=—22c,(Hu) sm?(z+zo) smT (z-29)»

n=1

where c,(H,) are the formal coefficients of the expan-
sion. From the form of the Green’s function (5) and the
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expansions of the square of the hyperbolic sine it follows
that this partitioning is feasible if every term of the above
series has the factor (z + zo)cos (1t/2h) (z — zp)sin (r/2h)
and this factor contains singularities of the same type as
does the kernel K(z, zp). That a common factor exists
becomes obvious if we write a trigonometric identity of
the form

sin [Zn— (z% zc)J
= 2nsm7 (ztzy) cosf (ztzy)

5 (=1 (=2 (- )
+§’.(—4) T @k-nt

x sin?= ”f‘ (z+zo)]-‘

Thus, the Green’s function, which is part of the simul-
taneity condition (7), has a separable singular kernel,
K(z, z), Eq.(8) which is integrable. The function
remaining under the logarithm sign is regular at low
velocities, and it may be expanded into a series because
the coefficients c,(H,) are odd functions of the applied
field ~ a factor which validates the expansion in
Eq. (18).

By limiting the solution (16) to the harmonic
cos (2nz/ h), we derive from Eq. (18) an equation in
velocity gq

8nMq, [14L (3 32 2
Hph= 20 if )h2~?h2 T
“F . o)
HyMh >
X ( & ) Jr

The first integral is taken by means of Eq. (17), and the
last one, by repeated integration. By resolving (19) for
¢o and noting that the nonlinearities are weak, we
arrive at the following relation connecting the domain-
wall velocity to the applied field:

4 3 HMh 1} 5
371&(3))( - )y | @)
where  is the linear mobility of the domain wall,
Eq. (12).

Our attention is drawn to the fact that the domain-
wall velocity increases upon entry into the nonlinear
region. With an increase in the domain-wall bowing,
which is proportional to the square of the dimensionless
amplitude, Eq. (14), the generation of eddy currents falls
off, and the eddy-current drag decreases. This becomes
especially clear if we take into account the boundary
condition for the eddy-current components tangential to
the domain-wall surface: j,, - j,, = (8% / ¢c)q,, where
G, =4 /(1+q"?)"is the normal component of the veloc-
ity. The process builds up with an increase in the applied

%“UHL
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field and, according to the numerical results reported by
Bishop [3], terminates in the separation of a closed
domain from the domain wall via the formation of a neck
in the central portion of the layer shown in Fig. 1.

Tt remains to calculate the energy loss W = 2MHghd,
dissipated by the domain wall in the course of motion
as a function of velocity. Since the last term on the
right-hand side is small, we invert Eq. (20) and obtain
an expression of the form

W= (2hMgy/ )

x{l oy 0y (q“)z} @
3'7nL(3) c uM’ )

In view of nonlinearity, the energy loss decreases for

the same reasons as were mentioned in connection with

Eq. (20). If the domain wall oscillates at some low fre-

quency o, the energy lost over a cycle of motion can be

estimated as

22W _ 2hMo
o T p
(22)
x|t t (Mh) LR
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where the overbar denotes the average of the corre-
sponding powers of the oscillation amplitude. Of
course, Eqg.(22) takes into account only what are
known as anomalous losses [2].

The frequency smallness criterion can be estab-
lished using Eq. (8), which holds true for alternating
applied fields. By seeking its solution as an expansion
in terms of the even part of Eq. (15),

70 = ¥ a, (0¥,
n=0
we reduce Eqg. (8) to an infinite-dimensional system of
linear equations of the form

2nn *

) il 32Mh
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Heren=0, 1,2, ..., K(z, zp) is defined in Eq. (8), and the
angular brackets indicate that the integrals of the kernel
are taken between the limits ~h/2 < zand zy < h/2.
These equations relate the amplitudes and phases of the
various harmonics in the expansion of the solution.

Let us estimate the effect of the spatial harmonic
cos (2nz/ h) on the single, uniform harmonic y, which
is directly excited by the uniform external field Ho(?).
For this purpose, we determine the elastic energy of
domain-wall bowing in the approximation of Eq. (16)
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where the linear domain-wall mass density is
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The existence of the mass reflects the effect of the bow-
ing relaxation on the dynamics of domain-wall dis-
placement as a whole. Subject to Eq. (12), this may be
described by an equation of the form

mtjn+~2L:hq' = 2MH, (1).

24

(26)

A similar equation, but with minor corrections, fol-
Tows from the system (23) if we limit it to only the first
two even harmonics.

The viscous term in Eq. (26) dominates over the
inertial term if

2Mh_THEG) )( 2]

wm 64 Mzh
This serves, at the same time, as the criterion of appli-
cability of Eq.(22) to the estimation of anomalous
losses. ForM=5%x 102G, p=10"s,6=1erg cm?,
and h=5x10%cm, we find by Eq.(25) that
m=5x10"7 g cm™. Note that this value of the “bow-
ing” mass defined by Eq. (25) exceeds the intrinsic
Déring mass of 10 g cm™2 k=5 x 102 g cm™. With
the above values of the parameters, the upper bound on
frequency, as defined by Eq. (27), reduces to the ine-
quality ® < 10° rad s, To this frequency limit there
corresponds a field penetration depth equal to
8=c(2mw / p)'? = 0.1 cm, which is greater than the
thickness of the layer.

It is relevant to note that there is one more estimate
of the domain-wall mass proposed by Carr and given in
Ref. [1]. In this case, the motion of a plane domain wall
is considered, and the mass is deduced from the energy
density of the eddy-current magnetic field, H*/ 8%. As
compared with Eq. (25), the mass as defined in Ref. [1]
is independent of the domain-wall surface energy den-
sity ¢ and shows a different power dependence on the
layer thickness h, being proportional to the ratio
WM? | p*c* g cmr2. According to the estimates given in
Ref. [1], this mass exceeds the Doring mass, beginning
from thicknesses & = 10 pm upwards. The ratio of the
mass defined by Eq. (25) to the reduced one is M?h / G,
and for not too thin layers it typically exceeds unity.

In conclusion, we will briefly dwell on the dynamics
of a 180° domain wall in a normally magnetized con-
ducting layer. In the coordinate system of Fig. 1, there
are two domains with magnetizations M, = M, one on
the left and the other on the right of the domain wall
shown in the figure. The equations of domain-wall
motion are the same as Eq. (1), but the external field H,
is now directed along the z-axis, whereas the eddy-cur-
rent field H(y, z) is collinear with this axis. The eddy-
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current ficld equation is likewise the same as Eq. (2),
but now even the plane domain wall is not free from the
influence of demagnetizing fields. The right-hand side
of Eq.(2) additionally includes the field due to the
“magnetic charges” present at the surfaces of'the layer

B2 =02 (4TM ()

of
y 5 (28)
+4M (atan —= RIS +atan h/2—z) b
where M(y) = —sgn yM. The induction now becomes

zero in the interior of the domains, and its attenuation
must lead to a decrease in the drag produced on the
domain wall by the eddy-current ficlds, as compared
with the case of a tangentially magnetized layer. If the
domain-wall bowing is neglected, the presentation in
Eq. (28) will be enough for us to find the linear mobility
similar to the one defined by Eq. (12). In the publica-
tions known to us, the effect of demagnetizing fields
has not been evaluated by Eq. (28).

The boundary conditions for Eq. (2) are formally the
same as the previous ones given in Eq.(4):
H(y, z=% h/2)=0. The field component normal to the
domain wall, H,, is continuous at the layer boundaries
because the permeability of the medium is equal to
unity. From the equality of tangential electric-field
components and Maxwell’s equations we find that at
the layer boundaries 0H(y, z = h/2) / dy = 0, and this
leads (to within an insignificant constant, as in the pre-
vious case) to the boundary condition formulated
above.

In the linear approximation, the simplest way to

solve the electrodynamic problem is to take a Fourier
transform along the y-axis

16"2Mqoe-xk; w2
2

cp

H, (kz) =
29)

X [ sinhkz — %{\anh ézk coshkz_‘,

where the notation is the same as used before. The
mobility j is determined by the linearized simultaneity
condition (7)
w2 1
J' dz{Ha+*IH (k, z)dk\ =0.
-h2
On inserting Eq. (29), this gives
1 (:2p
8nb Mk’

(30)

p= 31

coshi)dx 0.6.

The functional dependence of mobility on layer
parameters is the same as in Eq. (12), but the numerical
coefficient in Eq. (31) exceeds the one used in Eg. (12).
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CONCLUSIONS

As follows from physical considerations, the mobil-
of the domain wall in a perpendicular magnetized

conducting layer exceeds the one in a tangentially mag-
netized conducting layer.
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