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Abstract—This paper deals with the mechanism of the formation of a 180° head-on domain wall (HDW) at a
magnetization inhomogeneity in a perpendicularty magnetized uniaxial ferromagnet of the easy-axis type under
the effect of a magnetic field oriented oppositely to the magnetization in the bulk of the sample. As the inho-

mogeneity, a surface layer that is formed spontaneously i
ropy of the easy-plane type is considered. An analytical

n the presence of a sufficiently strong surface anisot-
criterion for the formation of an HDW in an applied

magnetic field has been established, which satisfactorily agrees with the results of a direct numerical integration
of the Landau-Lifshitz equations. Magnetization reversal occurs without the formation of HDWs and termi-

nates at a different value of the applied field.

1. INTRODUCTION

In the course of magnetization reversal of large fer-
romagnetic samples, three stages are usually distin-
guished: nucleation of domain walls (DWs), their dis-
placement, and rotation of the magnetization vector,
which successively change one another with increasing
external magnetic field [1-4]. The importance of the
first stage is due to the fact that the mechanism of nucle-
ation of a DW determines the interval of fields in which
magnetization reversal of the main volume of the sam-
ple occurs. Unfortunately, this stage has been studied in
micromagnetic respect much worse than the Jatter two.

In this paper we study the simplest situation, in
which the nucleation of a DW occurs at a two-dirgen-
sional defect—in a surface layer of an inhomogeneous
magnetization of a uniaxial ferromagnet. The latter is
magnetized perpendicularly to its most developed flat
surface (the easy axis also is perpendicular to this
plane), on which surface anisotropy of the easy-plane
type is concentrated. The formation of such layers is
well known (see, e.g., [5]); they contribute to resonance
and other properties of magnets; in such layers, spin-
reorientation transitions are observed (see [5] or the
recent work [6]).

Note that the surface anisotropy of the easy-plane
type should be sufficiently large; on the order of mag-
nitude, it should coincide with the main anisotropy of
the easy-axis type, in order that the surface layer be in
a stable state. Such a situation, according to [6], takes
place in nanoparticles of BaFe;0,. It is emphasized in
[4] that the surface anisotropy of the easy-plane type is
simulated by an artificial layer that is coupled by a
strong biquadratic exchange interaction with the uniax-
ial matrix. Another relatively new technology is the
implantation of ions of inert gases; this method is
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widely applied for the modification of surface proper-
ties of rare-earth iron garnet films [7].

It is shown in Section 2 of this work that the range
of existence of such a surface layer in a magnetic field
that is oriented oppositely to the magnetization direc-
tion in the bulk of the sample is restricted from above
by a certain critical value. It is supposed that further
magnetization reversal occurs by the nucleation and
movement of a DW whose surface is perpendicular to
the magnetization in domains, or a “head-on domain
wall” (HDW) whose dynamics was studied in [8]. The
repeated magnetization reversal (in a field of the oppo-
site orientation) occurs in quite a different way—via a
gradual inhomogeneous rotation of the magnetization
without the formation of an HDW—and is terminated
at adifferent value of the field. When deriving these and
other results, it is very important to take into account
the nonlinearity of the boundary conditions caused by
the surface anisotropy.

In Section 3, to verify the obtained analytical
results, we perform direct numerical integration of the
Landau-Lifshitz equations with allowance for nonlin-
ear boundary conditions. The simulation confirms the
results obtained in Section 2 and the previously
obtained [8] dynamic results concerning HDWs. In
Section 4, we show that to ensure the stability of the
planar shape of HDWs a certain gradient of the surface
energy of HDWs or of the applied magnetic field
should exist.

2. STABILITY OF STATIC STRUCTURES
AND THE CRITICAL FIELD
FOR THE FORMATION
OF A HEAD-ON DOMAIN WALL

Let a uniaxial ferromagnet occupy the half-space 72 0
and its easy axis (EA) be collinear with the 0z axis. If
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condition Q = K,/2nM? > 1 (where Q is the so-called
quality factor, K, > 0 is the uniaxial anisotropy con-
stant, and M is the magnetization) is fulfilled, then the
vector M in the bulk of the sample will be collinear to
the Oz axis as well. The surface anisotropy of the easy-
plane type is localized on the surface (z = 0). The
energy of the system consists of the volume and surface
parts (E=E, + E,), which are expressed through the cor-
responding energy densities w,, ;:

%ﬁ W)Llw: E= j.dz(wv +w,)
\J’ 3 sz(Am —K,m? +2nM*m? - HMm,)
/ Wrm +_[de m28(z). {S

1)

; Here m(z, tfze unit magnetization vector, A > 0
6 - is the exchange stiffness, K, , > 0 are the constants of
=%~ volume and surface anisotropy, H, > 0 is the external
‘magnetic field oriented along Oz, and 8(z) is the"delta
function. The known nonlinear boundary conditions
follow from the variation giv En by (1) and have the,

form == {[‘

M
.S
i’t‘_ Am,y+Kmm”—O

@)
D& Am+Kmmi-1) = 0. 36?%0

The dynamics of the system is described by the Lan-

Wu—ufshitz equations

"= %l[m, Bwvl5m]+%;![m, [m, 8w /3m]], (3)

with boundary conditions (2), where y > 0 is the mag-
netomechanical ratio and o > 0 is the damping param-
eter.

oy

In what follows, we will need several simple one-
dimensional static solutions (3) of the type m = (siny,
0, cosy), where the angle y(z) is measured from the
positive direction of the 0z axis, which will be consid-
ered in the half-space z > 0. The equation 3E,/0y = 0
has the first integral

S D
/

Ay + (K, - 2nM)cos y + HMcosy = C, (4)
where Cis an arbitrary constant. The second arbitrary con-
stant z enters into solution (4) additively: W(z) = W(z - z).
Boundary conditions (2) after the introduction of a des-
ignation y, = y(z = 0) take on the form

=0/

Ay, + K, siny,cosy, = 0. (5)

If at the chosen value of C we consider (4) at the sur-
face z =0, we can determine \, by eliminating y; from

(4) and (5) and solving the resulting trigonometric
equation.
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To investigate the stability of solutions in the half-
space z >0, it is expedient to represent the total energy (1)
in the form

(=)
E =24 [ y(wdy-Kgsin'y,.

Ve

©

In this expression, y(ee) is the magnitude of the angle
in the bulk of the sample (depending on the choice of
the constant C), and y'(y) is determined from the first
integral (4).

Note that the phase plane (y. ') (determined by
(4)) in the space —eo < z < oo is well known (Shi-
robokov, 1945). Below, we consider features intro-
duced by surface anisotropy for three types of sepa-
ratrice solutions (4).

(1) Degenerate case: H, =0, C = K, — 2nM%

In an unbounded space, a 180° HDW corresponds to
this case; in the half-space z > 0 and in the presence of
surface anisotropy, we have, according to the above
considerations,

y' = siny/A,
—— D
cosy = —tanh(lpz,)A). A= JAIK.-2nMY).

Here, A is the parameter of the thickness of the surface
layer, while z, and y, are determined by the relation-
ships

\/ 1/K¥ +cosy, = 0, z, »=W:tanhl/1(,‘,

T ®)

K* = KJIA(K,-2nM")]
The subsurface layer exists if K¥ > 1. and its energy,
according to (6), is

E = 2A/A(1 + cosy,) — K siny,

©

The quantity dE/dy, coincides with the lefi-hand side

of (5); *EfOy? % K¥? —1)/K* >0. so that the surface
layer (7) is stable. In what follows. Eq. (7) will be used
as the initial condition, which is consistent with the
Landau-Lifshitz equations (3) and related boundary
conditions (2).

(2) Separatrice going out of the saddle (y =, ' = 0)
into the region 0 < y < and returning to the same sad-
dle; y(eo) =m; H,> 0 is oriented oppositely to the mag-
netization in the bulk of the sample; C = K, — 2nM? —
HM.
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6. The bouhdary of stability of a surface layer (12)
toward the formation of an HDW.

This separatrice, which has the form of a static soli-
ton, is determined by the equation

y' = £2cosy/24sin’y/2 - H,

(10)
1>H = H/H*>0, HY = 2(K,-2xMY)/M.

In (10) and in what follows we use the dimensionless
field H, and the lengths are measured in units of A (see
(7)). The solution to (10) has the form

cosh[+/1-H(z-z,)].

Note that solutions of this type were used in [9, 10] to
describe nonlinear thermal excitations in unbounded
ferromagnets.

Taking (10) at z = 0 and substituting the derivative
v, =—K¥ siny cosy, from (5), we obtain an equation
that relates y, and H > 0:

tany/2 = an

H= sin*/wzi( 1-K*cos’y,). (12)
Here, v, is the ang\e bétween the magnetization vector

and the 0z axis at the surface of the sample and K7 is
the dimensionless constant of surface anisotropy (see
Eq. (8)). Since m,(z = eo) — -1, the comparison of (5)
and (10) shows that the angles v, in (12) lie in the range
of m/2 <y, < and we should take the positive sign in
(10). The maximum of the right-hand side (3H/dy, = 0)
is reached at

cosyp = (1—4/1+3/K¥)/3<0.

Substitution of (13) into (12) determines the maximum
allowable field H, at a given K (see Fig. 1). The max-
imum of the field (H =4/5) is reached at K} =577, i.e.,
at the boundary of existence (13), whén W, =y, — 1

13)

THE PHYSICS OF METALS AND METALLOGRAPHY

700Ul

//Zél:b(/ /(:Y 2 //@ 3

KHODENKOV

and the subsurface layer vanishes: the minimum field
(Hy = 1/2) is reached when K} — o< and y, — /2.

At H < Hy, Eq. (12) has three roots for cosy.. One of
them always exceeds unity: of the two other. only the
smaller one is stable. We can check that the require-

ment QE/Qy. > 0 reduces 1o the inequality H <

cosy,(K** cos2y, ~ 1). Substituting (121 into the left-
hand side of the inequality. we obtain the condition
cosy, < cosy, (see Eq. (13)). which is sausfied oniy by
the (minimum) solution lying on the left of the maxi-
mum H.

In an unbounded sample. solur «11). which
sometimes is called the “0° DW unstable. Consider
the equation of the energy balance

a%wv) = 7a<aaﬂ”}/wu ~at (14
which is a direct consequence of Eq. (31 ... means

integration with respect to dz in infinite Iimuts ;. For the
amplitude m, , of small magnetizatior oscillations rel-
ative to the static solution (12) in the planes x(z and y0z.
rtespectively, we obtain, instead of ( 145,

a - &

= 2Lam-)

Bt(m‘L'm’+m' am-) s
= ~2a(m}+mdI(1+ o).

The time is measured in units of 1/yH7 (see Eq. (10)).

and the operators L1,2 have the form

L= -7 +y" iy,

Ly = Li+2H(1 + cosyi.

(16)

where \/(z) is determined by (11). The first of these
operators is a singular one: L, y =0 and. since w'(2) is
an antisymmetric function with a single zero at z = 0.
this operator possesses a symmetrical level with a neg-
ative eigenvalue. Note also that L:sinw = 0. and that

siny is a symmetric function of fixed sign: i.e.. siny is
the lower eigenfunction.

The above properties of ;.. permit us to choose
the initial data at 7 = 0 of the Cauchy problem for m; »
in such a way that the energy (the expression in angle
brackets on the left-hand side in (15)) be negative. The
integration of both sides of Eq. (15} with respect to time
from 7 =0 to a certain arbitrary moment shows then that
the energy can only decrease. remaining negative (the
right-hand side of (15) is always negauvei. This indi~
cates the instability of separatrice (11} in an unbounded
sample. On the contrary, in a finite sample and in the
presence of sufficiently strong surface anisotropy (see
Eq. (13) and the accompanying text). when only one
Vol. 97
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part (z > 0) of solution (11) is realized, this solution
describes a stable surface layer.

(3) Two separatrices with positive and negative
signs of Y’ going out of one saddle (y = 0, ' = 0) and
going into another saddle (W = 2m, y' = 0); Y(eo) = 0,
H_>0is oriented along the magnetization in the bulk of
the sample, C = K, — 2nM?* + HM.

In the earlier designations, we have an expression
similar to (10):

V' = —2siny/24H + cos /2 an

and an expression similar to (12) for the external field:
H = cos"y/2(K* cosy,— 1) >0. 18)

Omitting the details of the investigations, we note
that the magnetization reversal of the surface layer
occurs in quite a different way as compared to the pre-
vious case. The magnitude of the angle at the sample
surface lies within 0 < W, < /2 and the condition of the

positive definiteness (18) requires that K* > 1. As the
field increases, y, gradually decreases to zero, until at

H=K¥-1 19)

the sample is completely magnetized along the field.

Note in conclusion that, in contrast to (11), in an
infinite sample the separatrice solution of the Bloch
type, formally defined by Eq. (17), is stable, although
its range of existence is limited from above [9-12].

3. DYNAMIC NUCLEATION
AND THE DYNAMICS OF HEAD-ON DOMAIN
WALLS: NUMERICAL RESULTS

The most interesting result of the preceding sectiofi,

is the conclusion concerning the magnetization reversal
of a sample with an applied magnetic field that is anti-
parallel to the magnetization in the bulk of the sample.
The surface layer (11) exists if the external field H does
not exceed a certain upper limit Hy, which can be deter-
mined by substituting (13) into (12). In this section, to
check this result and the previous supposition on the
formation of HDWs, we directly integrate the problem
with initial conditions (Cauchy problem) for the Lan-
dau-Lifshitz equations in the form (3) with boundary
conditions (2).

Note that the arbitrary initial functions can be
incompatible with nonlinear equations and related
boundary conditions. Therefore, as the initial condi-
tions at ¢ = 0 we will use (depending on the circum-
stances) either Eq. (7) or Eq. (11):

my(z,t=0) = sin -2,
( ) WY(z-z,) o0
my(z,t=0) =0, myz,t=0) = cosy(z-z,).

If the external magnetic field H is less than H, (see
Fig. 1), then, as follows from numerical experiments,
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Fig. 2. Nucleation and growth dynamics of an HDW: (J)
my(z,1=0); (2) myfz, 220);, (3) my(z, 254.1); (4) m(2, 254.1);
(5) my(z, 259.9); and (6) m,(z, 259.9). Curves (3), (4) and
(5), (6) separate the half-period of the precession 7/2; the
time is measured in 1Y H3 .

there occurs a gradual evolution of solution (20) to a
solution of the separatrice-loop type (11) with new val-
ues of z, and y,. As H approaches Hy, there is observed
an increase in the duration of the transition to the new
static solution (and an increase in the required comput-
ing resources and time).

On the other hand, if H > H,, then the system
behaves quite differently: in the surface layer, an
HDW is formed, which then breaks away from the
sample boundary z = 0 and moves into the depth of
the sample.

The data points in Fig. 1 correspond to the values of
H, calculated by Eq. (3). In view of the previously
noted retardation of relaxation and computing difficul-
ties, all calculated points lie somewhat higher than the
theoretical curve. In the range of K¥ > 1, we used the
surface layer described by Egs. (7) and (8) as the initial
distribution. Since at K < 1 this layer is not a solution to
Egs. (3), (2), in this case we used separatrice (11) at a
proper value of z, as the initial condition. Note here that
the choice of conditions differing from (7) or (10) can
change the threshold for the formation of HDWs.

A typical behavior of the system in the hypercritical
range, where HDW:s arise, is displayed in Fig. 2 for the
parameter values indicated in the caption. At a suffi-
cient distance from the surface (z = 0). the dynamics of
a 180° HDW within the accuracy of the calculation is
described by the formulas [8]

m(z,t) = cos\y(: V’).
g (21 =0) = sin\v(z ‘AV’)(cosw(l), sing(n), (21)
Vol. 97 No. 5 2004
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V = 0AYH,, (1) = YH,1,

where the function y is defined by (7) and V is the
velocity of HDWs. The correspondence between (21)
and the formulas given in {8] is reached by the substitu-
tiony—= ¥/(1 + 02, i.e., by the transition to the Gilbert
form in Egs. (3) and (21).

4. STABILITY OF HEAD-ON
DOMAIN WALLS AGAINST UNDULATIONS

In experiments, the development of HDWs occurs
nonuniformly, by the formation of nonthrough
domains, which leads to some specific features in their
behavior [13]. We show that a planar HDW that is infi-
nite in the x0y plane is unstable toward bending of its
surface, but the planar shape may be stabilized by intro-
ducing some stabilizing factors into expression (1) for
energy.

In the model of an infinitely thin DW the magnetiza-
tion corresponding to (7) has only one component
M (x, z) = -Msgn( z—q(x)), where g(x) = asin(px) is the
function that describes the undulation of an HDW in an
arbitrarily chosen direction x. We first calculate addi-
tional contributions to the surface and magnetostatic
energies caused by undulation, assuming that the
amplitude a is small (ap < 1).

The surface energy of a DW averaged over the
period A = 27/a can be calculated in a trivial way as
AE, = (K, — 2rM*)a*(Ap)*. The magnetostatic contri-
bution is calculated based on the Poisson equation
V2, =8nMB(z — g(x)) for the magnetostatic potential
%(x, z). Expanding y in harmonics exp(ikz) and using
the representation (—x9M/0z)/2 for the energy density,
we obtain, after averaging over the period A, the follow-
ing expression:

- I
(2M*A) jdk:/|kl\ Idx,jdx:
— oo o

(22)
x explik,[q(x)) - q(x2))1explJk]|x, - x5l 1.

In the long-wavelength limit (ka < 1), the first expo-
nent can be expanded into a series. The zero term of the
expansion is independent of the coordinate x; this is the
(infinite) energy of a planar HDW, which can be omit-
ted. The next term, which is linear in kg, is antisym-
metric in k;; its integral with respect to dk, in infinite
limits is zero. The additional magnetostatic energy is
negative:

A
AE,, = -(2M*a*I\) Idxz
]
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x jdx,(sinpx, — sinpx,)/(x, - x,)° 23)

= —d (K, - 2nM")|plAIQ.

The total correction to the energy in a quadratic approx-
imation is

AE, = AE+AE,,

24
= d’(K, - 21M°)((pA) - plA/Q), o

where Q = K,/2nM? > 1 is the designation (which has
already been used above) for the quality factor, and p =
2m/) is the wave vector of the undulation distortion.

Expression (24) shows that the planar shape of an
HDW under the effect of magnetostatic forces becomes
unstable toward undulation in the range of small wave
numbers p. The stability is restored if we apply to the
HDW a stabilizing gradient field H, = —-H'z [14]. Esti-
mates show that the stabilization energy has the form
MVH Aa*, where H, may be considered as an effective
field caused by the gradient of the surface energy of the
HDW. By adding this positive expression into (24), we
see that the stability of the HDW takes place at

(25)

As the gradient H' decreases (as we go out from the sta-
bility region), the undulations begin forming starting
from the wave numbers |p| = 1/(2QA).

H'2 (K, -2nM")/(40°MA).

5. CONCLUSIONS

In this paper, we studied the magnetization reversal
in a surface layer localized near the surface of a perpen-
dicularly magnetized ferromagnet of an easy-axis type.
Such a layer is formed under the action of a surface
anisotropy of the easy-plane type. Its stable existence
requires the presence of a sufficiently strong surface
anisotropy comparable with the bulk anisotropy in
magnitude.

If the external magnetic field is oriented oppositely
to the magnetization in the bulk of the sample, then
there exists a critical value of the field (see Fig. 1),
above which a spin-reorientation transition with the
formation of a head-on domain wall (HDW) occurs (see
Eq. (12) and Fig. 2). The backward magnetization
reversal occurs without the formation of an HDW, viaa
gradual vanishing of the layer and a transition of the
sample into a uniformly magnetized state in a field (19).

Previously, to control magnetic bubbles in magnetic
memory units, the so-called ion-implanted circuits
were designed (see [7]). This example shows that the
investigation of surface layers, apart from a purely the-
oretical value, may have an independent practical
(applied) importance.
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